BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35507263)

  • 1. Dissecting the Genome for Drug Response Prediction.
    Pepe G; Carrino C; Parca L; Helmer-Citterich M
    Methods Mol Biol; 2022; 2449():187-196. PubMed ID: 35507263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data.
    Park S; Soh J; Lee H
    BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug sensitivity prediction from cell line-based pharmacogenomics data: guidelines for developing machine learning models.
    Sharifi-Noghabi H; Jahangiri-Tazehkand S; Smirnov P; Hon C; Mammoliti A; Nair SK; Mer AS; Ester M; Haibe-Kains B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34382071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches.
    Lin E; Lin CH; Lane HY
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning for Pharmacogenomics and Personalized Medicine: A Ranking Model for Drug Sensitivity Prediction.
    Sotudian S; Paschalidis IC
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2324-2333. PubMed ID: 34043512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression.
    Majumdar A; Liu Y; Lu Y; Wu S; Cheng L
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A survey and systematic assessment of computational methods for drug response prediction.
    Chen J; Zhang L
    Brief Bioinform; 2021 Jan; 22(1):232-246. PubMed ID: 31927568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel machine learning-based approach for the computational functional assessment of pharmacogenomic variants.
    Pandi MT; Koromina M; Tsafaridis I; Patsilinakos S; Christoforou E; van der Spek PJ; Patrinos GP
    Hum Genomics; 2021 Aug; 15(1):51. PubMed ID: 34372920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AITL: Adversarial Inductive Transfer Learning with input and output space adaptation for pharmacogenomics.
    Sharifi-Noghabi H; Peng S; Zolotareva O; Collins CC; Ester M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i380-i388. PubMed ID: 32657371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response.
    Su R; Liu X; Wei L; Zou Q
    Methods; 2019 Aug; 166():91-102. PubMed ID: 30772464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale pharmacogenomic studies and drug response prediction for personalized cancer medicine.
    Feng F; Shen B; Mou X; Li Y; Li H
    J Genet Genomics; 2021 Jul; 48(7):540-551. PubMed ID: 34023295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies.
    Huang C; Mezencev R; McDonald JF; Vannberg F
    PLoS One; 2017; 12(10):e0186906. PubMed ID: 29073279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensembled machine learning framework for drug sensitivity prediction.
    Sharma A; Rani R
    IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PANCDR: precise medicine prediction using an adversarial network for cancer drug response.
    Kim J; Park SH; Lee H
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38487849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches.
    Güvenç Paltun B; Mamitsuka H; Kaski S
    Brief Bioinform; 2021 Jan; 22(1):346-359. PubMed ID: 31838491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinformatics Approaches to Predict Drug Responses from Genomic Sequencing.
    Madhukar NS; Elemento O
    Methods Mol Biol; 2018; 1711():277-296. PubMed ID: 29344895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning of pharmacogenomics resources: moving towards precision oncology.
    Chiu YC; Chen HH; Gorthi A; Mostavi M; Zheng S; Huang Y; Chen Y
    Brief Bioinform; 2020 Dec; 21(6):2066-2083. PubMed ID: 31813953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model.
    Emdadi A; Eslahchi C
    BMC Bioinformatics; 2021 Jan; 22(1):33. PubMed ID: 33509079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.