These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35507265)

  • 21. ProMode: a database of normal mode analyses on protein molecules with a full-atom model.
    Wako H; Kato M; Endo S
    Bioinformatics; 2004 Sep; 20(13):2035-43. PubMed ID: 15059828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dynamics: deciphering the data.
    Dauber-Osguthorpe P; Maunder CM; Osguthorpe DJ
    J Comput Aided Mol Des; 1996 Jun; 10(3):177-85. PubMed ID: 8808735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of changes of cavity volumes in predefined directions of protein motions and cavity flexibility.
    Barletta GP; Barletta M; Saldaño TE; Fernandez-Alberti S
    J Comput Chem; 2022 Mar; 43(6):391-401. PubMed ID: 34962296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mass weighted chemical elastic network model elucidates closed form domain motions in proteins.
    Kim MH; Seo S; Jeong JI; Kim BJ; Liu WK; Lim BS; Choi JB; Kim MK
    Protein Sci; 2013 May; 22(5):605-13. PubMed ID: 23456820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increasing the Sampling Efficiency of Protein Conformational Change by Combining a Modified Replica Exchange Molecular Dynamics and Normal Mode Analysis.
    Peng C; Wang J; Shi Y; Xu Z; Zhu W
    J Chem Theory Comput; 2021 Jan; 17(1):13-28. PubMed ID: 33351613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs.
    Pachov DV; van den Bedem H
    PLoS Comput Biol; 2015 Jul; 11(7):e1004361. PubMed ID: 26218073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit.
    Skjaerven L; Martinez A; Reuter N
    Proteins; 2011 Jan; 79(1):232-43. PubMed ID: 21058295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformational changes and allosteric communications in human serum albumin due to ligand binding.
    Ahalawat N; Murarka RK
    J Biomol Struct Dyn; 2015; 33(10):2192-204. PubMed ID: 25495718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bridging between NMA and Elastic Network Models: Preserving All-Atom Accuracy in Coarse-Grained Models.
    Na H; Jernigan RL; Song G
    PLoS Comput Biol; 2015 Oct; 11(10):e1004542. PubMed ID: 26473491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions.
    Naritomi Y; Fuchigami S
    J Chem Phys; 2011 Feb; 134(6):065101. PubMed ID: 21322734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Projection of Monte Carlo and molecular dynamics trajectories onto the normal mode axes: human lysozyme.
    Horiuchi T; Go N
    Proteins; 1991; 10(2):106-16. PubMed ID: 1896424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulation for the reversed power stroke motion of a myosin subfragment-1.
    Masuda T
    Biosystems; 2015 Jun; 132-133():1-5. PubMed ID: 25864376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparing the intrinsic dynamics of multiple protein structures using elastic network models.
    Fuglebakk E; Tiwari SP; Reuter N
    Biochim Biophys Acta; 2015 May; 1850(5):911-922. PubMed ID: 25267310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of functional motions in Brownian molecular machines with an efficient block normal mode approach: myosin-II and Ca2+ -ATPase.
    Li G; Cui Q
    Biophys J; 2004 Feb; 86(2):743-63. PubMed ID: 14747312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iterative cluster-NMA: A tool for generating conformational transitions in proteins.
    Schuyler AD; Jernigan RL; Qasba PK; Ramakrishnan B; Chirikjian GS
    Proteins; 2009 Feb; 74(3):760-76. PubMed ID: 18712827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accelerated molecular dynamics and protein conformational change: a theoretical and practical guide using a membrane embedded model neurotransmitter transporter.
    Gedeon PC; Thomas JR; Madura JD
    Methods Mol Biol; 2015; 1215():253-87. PubMed ID: 25330967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generalized spring tensor models for protein fluctuation dynamics and conformation changes.
    Na H; Lin TL; Song G
    Adv Exp Med Biol; 2014; 805():107-35. PubMed ID: 24446359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Approximate normal mode analysis based on vibrational subsystem analysis with high accuracy and efficiency.
    Hafner J; Zheng W
    J Chem Phys; 2009 May; 130(19):194111. PubMed ID: 19466825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dynamics simulations and elastic network analysis of protein kinase B (Akt/PKB) inactivation.
    Cheng S; Niv MY
    J Chem Inf Model; 2010 Sep; 50(9):1602-10. PubMed ID: 20735046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational Methods for Studying Conformational Behaviors of Cyclic Peptides.
    Jiang F; Geng H
    Methods Mol Biol; 2019; 2001():61-71. PubMed ID: 31134567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.