These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35507328)

  • 1. Electrical conductivity of random metallic nanowire networks: an analytical consideration along with computer simulation.
    Tarasevich YY; Vodolazskaya IV; Eserkepov AV
    Phys Chem Chem Phys; 2022 May; 24(19):11812-11819. PubMed ID: 35507328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical conductivity of nanorod-based transparent electrodes: Comparison of mean-field approaches.
    Tarasevich YY; Eserkepov AV; Vodolazskaya IV
    Phys Rev E; 2022 Apr; 105(4-1):044129. PubMed ID: 35590647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical conductance of two-dimensional random percolating networks based on mixtures of nanowires and nanorings: A mean-field approach along with computer simulation.
    Tarasevich YY; Eserkepov AV
    Phys Rev E; 2023 Mar; 107(3-1):034105. PubMed ID: 37073027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive Model for the Electrical Transport within Nanowire Networks.
    Forró C; Demkó L; Weydert S; Vörös J; Tybrandt K
    ACS Nano; 2018 Nov; 12(11):11080-11087. PubMed ID: 30398851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective medium theory for the conductivity of disordered metallic nanowire networks.
    O'Callaghan C; Gomes da Rocha C; Manning HG; Boland JJ; Ferreira MS
    Phys Chem Chem Phys; 2016 Oct; 18(39):27564-27571. PubMed ID: 27722404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical modeling of orientation effects in random nanowire networks.
    Jagota M; Scheinfeld I
    Phys Rev E; 2020 Jan; 101(1-1):012304. PubMed ID: 32069576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random nanowire networks: Identification of a current-carrying subset of wires using a modified wall follower algorithm.
    Tarasevich YY; Akhunzhanov RK; Eserkepov AV; Ulyanov MV
    Phys Rev E; 2021 Jun; 103(6-1):062145. PubMed ID: 34271708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultimate conductivity performance in metallic nanowire networks.
    Gomes da Rocha C; Manning HG; O'Callaghan C; Ritter C; Bellew AT; Boland JJ; Ferreira MS
    Nanoscale; 2015 Aug; 7(30):13011-6. PubMed ID: 26169222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-percolation to tune conductive behaviour in dynamical metallic nanowire networks.
    Fairfield JA; Rocha CG; O'Callaghan C; Ferreira MS; Boland JJ
    Nanoscale; 2016 Nov; 8(43):18516-18523. PubMed ID: 27782246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating connectivity and electrical conductivity in metallic nanowire networks.
    Nirmalraj PN; Bellew AT; Bell AP; Fairfield JA; McCarthy EK; O'Kelly C; Pereira LF; Sorel S; Morosan D; Coleman JN; Ferreira MS; Boland JJ
    Nano Lett; 2012 Nov; 12(11):5966-71. PubMed ID: 23062152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermo-electro-optical properties of seamless metallic nanowire networks for transparent conductor applications.
    Esteki K; Curic D; Manning HG; Sheerin E; Ferreira MS; Boland JJ; Rocha CG
    Nanoscale; 2023 Jun; 15(24):10394-10411. PubMed ID: 37294276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic degradation of metallic nanowire networks under electrical stress: a comparison between experiments and simulations.
    Charvin N; Resende J; Papanastasiou DT; Muñoz-Rojas D; Jiménez C; Nourdine A; Bellet D; Flandin L
    Nanoscale Adv; 2021 Feb; 3(3):675-681. PubMed ID: 36133849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Electro-Optical Performance of Silver Nanowire Networks.
    Manning HG; da Rocha CG; Callaghan CO; Ferreira MS; Boland JJ
    Sci Rep; 2019 Aug; 9(1):11550. PubMed ID: 31399603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing.
    Lagrange M; Langley DP; Giusti G; Jiménez C; Bréchet Y; Bellet D
    Nanoscale; 2015 Nov; 7(41):17410-23. PubMed ID: 26437607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridge percolation: electrical connectivity of discontinued conducting slabs by metallic nanowires.
    Baret A; Bardet L; Oser D; Langley DP; Balty F; Bellet D; Nguyen ND
    Nanoscale; 2024 May; 16(17):8361-8368. PubMed ID: 38323509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Imaging of the Onset of Electrical Conduction in Silver Nanowire Networks by Infrared Thermography: Evidence of Geometrical Quantized Percolation.
    Sannicolo T; Muñoz-Rojas D; Nguyen ND; Moreau S; Celle C; Simonato JP; Bréchet Y; Bellet D
    Nano Lett; 2016 Nov; 16(11):7046-7053. PubMed ID: 27753494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective electrode length enhances electrical activation of nanowire networks: experiment and simulation.
    Fairfield JA; Ritter C; Bellew AT; McCarthy EK; Ferreira MS; Boland JJ
    ACS Nano; 2014 Sep; 8(9):9542-9. PubMed ID: 25153920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmability of nanowire networks.
    Bellew AT; Bell AP; McCarthy EK; Fairfield JA; Boland JJ
    Nanoscale; 2014 Aug; 6(16):9632-9. PubMed ID: 24990707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical conductivity of crack-template-based transparent conductive films: A computational point of view.
    Tarasevich YY; Eserkepov AV; Vodolazskaya IV
    Phys Rev E; 2023 Oct; 108(4-1):044143. PubMed ID: 37978687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Investigation of the Morphology, Efficiency, and Properties of Silver Nano Wires Networks in Transparent Conductive Film.
    Han F; Maloth T; Lubineau G; Yaldiz R; Tevtia A
    Sci Rep; 2018 Nov; 8(1):17494. PubMed ID: 30504783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.