BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35507766)

  • 61. Characterization of cancer associated mucin type O-glycans using the exchange sialylation properties of mammalian sialyltransferase ST3Gal-II.
    Chandrasekaran EV; Xue J; Xia J; Locke RD; Patil SA; Neelamegham S; Matta KL
    J Proteome Res; 2012 Apr; 11(4):2609-18. PubMed ID: 22329400
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Kinetic properties and acceptor substrate preferences of two kinds of Gal beta 1,3GalNAc alpha 2,3-sialyltransferase from mouse brain.
    Kojima N; Lee YC; Hamamoto T; Kurosawa N; Tsuji S
    Biochemistry; 1994 May; 33(19):5772-6. PubMed ID: 8180204
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mammalian sialyltransferase ST3Gal-II: its exchange sialylation catalytic properties allow labeling of sialyl residues in mucin-type sialylated glycoproteins and specific gangliosides.
    Chandrasekaran EV; Xue J; Xia J; Locke RD; Patil SA; Neelamegham S; Matta KL
    Biochemistry; 2011 Nov; 50(44):9475-87. PubMed ID: 21913655
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Over-expression of ST3Gal-I promotes mammary tumorigenesis.
    Picco G; Julien S; Brockhausen I; Beatson R; Antonopoulos A; Haslam S; Mandel U; Dell A; Pinder S; Taylor-Papadimitriou J; Burchell J
    Glycobiology; 2010 Oct; 20(10):1241-50. PubMed ID: 20534593
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Exploring the substrate specificities of alpha-2,6- and alpha-2,3-sialyltransferases using synthetic acceptor analogues.
    Van Dorst JA; Tikkanen JM; Krezdorn CH; Streiff MB; Berger EG; Van Kuik JA; Kamerling JP; Vliegenthart JF
    Eur J Biochem; 1996 Dec; 242(3):674-81. PubMed ID: 9022696
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Trypanosoma cruzi subverts host cell sialylation and may compromise antigen-specific CD8+ T cell responses.
    Freire-de-Lima L; Alisson-Silva F; Carvalho ST; Takiya CM; Rodrigues MM; DosReis GA; Mendonça-Previato L; Previato JO; Todeschini AR
    J Biol Chem; 2010 Apr; 285(18):13388-96. PubMed ID: 20106975
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Alpha-(2-->3)- and alpha-(2-->6)-sialyltransferase activities present in three variants of Ehrlich tumor cells: identification of the products derived from N-acetyllactosamine and beta-D-Gal-(1-->3)-alpha-D-GalNAc-(1-->O)-Bn.
    Shigeta S; Winter HC; Goldstein IJ
    Carbohydr Res; 1994 Nov; 264(1):111-21. PubMed ID: 8001013
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Structural insight into mammalian sialyltransferases.
    Rao FV; Rich JR; Rakić B; Buddai S; Schwartz MF; Johnson K; Bowe C; Wakarchuk WW; Defrees S; Withers SG; Strynadka NC
    Nat Struct Mol Biol; 2009 Nov; 16(11):1186-8. PubMed ID: 19820709
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Differential effect of GalNAcalpha-O-bn on intracellular trafficking in enterocytic HT-29 and Caco-2 cells: correlation with the glycosyltransferase expression pattern.
    Gouyer V; Leteurtre E; Delmotte P; Steelant WF; Krzewinski-Recchi MA; Zanetta JP; Lesuffleur T; Trugnan G; Delannoy P; Huet G
    J Cell Sci; 2001 Apr; 114(Pt 8):1455-71. PubMed ID: 11282022
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases.
    Fukuta K; Yokomatsu T; Abe R; Asanagi M; Makino T
    Glycoconj J; 2000 Dec; 17(12):895-904. PubMed ID: 11511814
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sialylation processes in mitochondria: evidence for two distinct sialyltransferases located in the outer membrane.
    Gasnier F; Baubichon-Cortay H; Louisot P; Gateau-Roesch O
    J Biochem; 1991 Nov; 110(5):702-7. PubMed ID: 1723730
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The enzymatic sulfation of glycoprotein carbohydrate units: blood group T-hapten specific and two other distinct Gal:3-O-sulfotransferases as evident from specificities and kinetics and the influence of sulfate and fucose residues occurring in the carbohydrate chain on C-3 sulfation of terminal Gal.
    Chandrasekaran EV; Jain RK; Vig R; Matta KL
    Glycobiology; 1997 Sep; 7(6):753-68. PubMed ID: 9376678
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of cytokines on platelet production from blood and marrow CD34+ cells.
    Norol F; Vitrat N; Cramer E; Guichard J; Burstein SA; Vainchenker W; Debili N
    Blood; 1998 Feb; 91(3):830-43. PubMed ID: 9446643
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Unliganded and CMP-Neu5Ac bound structures of human α-2,6-sialyltransferase ST6Gal I at high resolution.
    Harrus D; Harduin-Lepers A; Glumoff T
    J Struct Biol; 2020 Nov; 212(2):107628. PubMed ID: 32971290
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Defining the glycophenotype of squamous epithelia using plant and mammalian lectins. Differentiation-dependent expression of alpha2,6- and alpha2,3-linked N-acetylneuraminic acid in squamous epithelia and carcinomas, and its differential effect on binding of the endogenous lectins galectins-1 and -3.
    Holíková Z; Hrdlicková-Cela E; Plzák J; Smetana K; Betka J; Dvoránková B; Esner M; Wasano K; André S; Kaltner H; Motlík J; Hercogová J; Kodet R; Gabius HJ
    APMIS; 2002 Dec; 110(12):845-56. PubMed ID: 12645662
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Study of O-glycan sialylation in C6 cultured glioma cells: evidence for post-translational regulation of a beta-galactoside alpha 2,3 sialyltransferase activity by N-glycosylation.
    Broquet P; George P; Geoffroy J; Reboul P; Louisot P
    Biochem Biophys Res Commun; 1991 Aug; 178(3):1437-43. PubMed ID: 1872858
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The polypeptide part of human chorionic gonadotrophin affects the kinetics of alpha 6-sialylation of its N-linked glycans but does not alter the branch specificity of CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase.
    Nemansky M; Edzes HT; Wijnands RA; Van den Eijnden DH
    Glycobiology; 1992 Apr; 2(2):109-17. PubMed ID: 1606356
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death.
    Amano M; Galvan M; He J; Baum LG
    J Biol Chem; 2003 Feb; 278(9):7469-75. PubMed ID: 12499376
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Oxygen governs Galβ1-3GalNAc epitope in human placenta.
    Ermini L; Bhattacharjee J; Spagnoletti A; Bechi N; Aldi S; Ferretti C; Bianchi L; Bini L; Rosati F; Paulesu L; Ietta F
    Am J Physiol Cell Physiol; 2013 Nov; 305(9):C931-40. PubMed ID: 23948708
    [TBL] [Abstract][Full Text] [Related]  

  • 80. ST3GAL3, ST3GAL4, and ST3GAL6 differ in their regulation of biological functions via the specificities for the α2,3-sialylation of target proteins.
    Qi F; Isaji T; Duan C; Yang J; Wang Y; Fukuda T; Gu J
    FASEB J; 2020 Jan; 34(1):881-897. PubMed ID: 31914669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.