These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35507872)

  • 1. Distinct roles of the Na
    Riederer EA; Moënne-Loccoz P; Valiyaveetil FI
    Proc Natl Acad Sci U S A; 2022 May; 119(19):e2121653119. PubMed ID: 35507872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the allosteric coupling mechanism in a glutamate transporter homolog via unnatural amino acid mutagenesis.
    Riederer EA; Valiyaveetil FI
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15939-15946. PubMed ID: 31332002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na
    Alleva C; Kovalev K; Astashkin R; Berndt MI; Baeken C; Balandin T; Gordeliy V; Fahlke C; Machtens JP
    Sci Adv; 2020 Nov; 6(47):. PubMed ID: 33208356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opposite movement of the external gate of a glutamate transporter homolog upon binding cotransported sodium compared with substrate.
    Focke PJ; Moenne-Loccoz P; Larsson HP
    J Neurosci; 2011 Apr; 31(16):6255-62. PubMed ID: 21508248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low Affinity and Slow Na+ Binding Precedes High Affinity Aspartate Binding in the Secondary-active Transporter GltPh.
    Hänelt I; Jensen S; Wunnicke D; Slotboom DJ
    J Biol Chem; 2015 Jun; 290(26):15962-72. PubMed ID: 25922069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the third Na+ site and the sequence of extracellular binding events in the glutamate transporter.
    Huang Z; Tajkhorshid E
    Biophys J; 2010 Sep; 99(5):1416-25. PubMed ID: 20816053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of substrate release by the aspartate transporter GltPh: insights from simulations.
    DeChancie J; Shrivastava IH; Bahar I
    Mol Biosyst; 2011 Mar; 7(3):832-42. PubMed ID: 21161089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of the extracellular gate and ion-substrate coupling in the glutamate transporter.
    Huang Z; Tajkhorshid E
    Biophys J; 2008 Sep; 95(5):2292-300. PubMed ID: 18515371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the glutamate transporter homologue GltPh using protein semisynthesis.
    Focke PJ; Annen AW; Valiyaveetil FI
    Biochemistry; 2015 Mar; 54(8):1694-702. PubMed ID: 25649707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved mechanism of extracellular gate opening and substrate binding in a glutamate transporter.
    Shrivastava IH; Jiang J; Amara SG; Bahar I
    J Biol Chem; 2008 Oct; 283(42):28680-90. PubMed ID: 18678877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism and energetics of ligand release in the aspartate transporter GltPh.
    Heinzelmann G; Bastug T; Kuyucak S
    J Phys Chem B; 2013 May; 117(18):5486-96. PubMed ID: 23590433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii.
    Ryan RM; Compton EL; Mindell JA
    J Biol Chem; 2009 Jun; 284(26):17540-8. PubMed ID: 19380583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic mechanism of coupled binding in sodium-aspartate symporter GltPh.
    Oh S; Boudker O
    Elife; 2018 Sep; 7():. PubMed ID: 30255846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1.
    Bastug T; Heinzelmann G; Kuyucak S; Salim M; Vandenberg RJ; Ryan RM
    PLoS One; 2012; 7(3):e33058. PubMed ID: 22427946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of alkali cations with glutamate transporters.
    Holley DC; Kavanaugh MP
    Philos Trans R Soc Lond B Biol Sci; 2009 Jan; 364(1514):155-61. PubMed ID: 18977733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Determinants of Substrate Specificity in Sodium-coupled Glutamate Transporters.
    Silverstein N; Ewers D; Forrest LR; Fahlke C; Kanner BI
    J Biol Chem; 2015 Nov; 290(48):28988-96. PubMed ID: 26475859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutralization of the aspartic acid residue Asp-367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate transporter EAAC1.
    Tao Z; Zhang Z; Grewer C
    J Biol Chem; 2006 Apr; 281(15):10263-72. PubMed ID: 16478724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Both reentrant loops of the sodium-coupled glutamate transporters contain molecular determinants of cation selectivity.
    Silverstein N; Sliman A; Stockner T; Kanner BI
    J Biol Chem; 2018 Sep; 293(37):14200-14209. PubMed ID: 30026234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+ interactions with the neutral amino acid transporter ASCT1.
    Scopelliti AJ; Heinzelmann G; Kuyucak S; Ryan RM; Vandenberg RJ
    J Biol Chem; 2014 Jun; 289(25):17468-79. PubMed ID: 24808181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of the mammalian glutamate transporter EAAT3.
    Heinzelmann G; Kuyucak S
    PLoS One; 2014; 9(3):e92089. PubMed ID: 24643009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.