These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35508149)

  • 1. Terahertz transverse electric modes in graphene with DC current in hydrodynamic regime.
    Moiseenko IM; Popov VV; Fateev DV
    J Phys Condens Matter; 2022 May; 34(29):. PubMed ID: 35508149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz amplification and lasing by using transverse electric modes in a two-layer-graphene-dielectric waveguide structure with direct current.
    Moiseenko IM; Popov VV; Fateev DV
    J Phys Condens Matter; 2023 Apr; 35(25):. PubMed ID: 36963112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of graphene TE surface plasmons in the terahertz regime.
    He XY; Tao J; Meng B
    Nanotechnology; 2013 Aug; 24(34):345203. PubMed ID: 23912303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces.
    Ye L; Chen X; Cai G; Zhu J; Liu N; Liu QH
    Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30042289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Dual-Band Terahertz Absorber with Two Passbands Based on Periodic Patterned Graphene.
    Zhang X; Wu W; Li C; Wang C; Ma Y; Yang Z; Sun G; Yuan N
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31533324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime.
    Huang X; He W; Yang F; Ran J; Gao B; Zhang WL
    Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-Based One-Dimensional Terahertz Phononic Crystal: Band Structures and Surface Modes.
    Quotane I; El Boudouti EH; Djafari-Rouhani B
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33167353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable plasmon-induced transparency with a dielectric grating-coupled graphene structure for slowing terahertz waves.
    Wang T; Yan F; Wang R; Tian F; Li L
    Appl Opt; 2020 Aug; 59(24):7179-7185. PubMed ID: 32902480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equivalent circuit model of graphene chiral multi-band metadevice absorber composed of U-shaped resonator array.
    Asgari S; Fabritius T
    Opt Express; 2020 Dec; 28(26):39850-39867. PubMed ID: 33379526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene.
    Huang ML; Cheng YZ; Cheng ZZ; Chen HR; Mao XS; Gong RZ
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29614736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete electromagnetic consideration of plasmon mode excitation in graphene rectangles by incident terahertz wave.
    Mashinsky KV; Popov VV; Fateev DV
    Sci Rep; 2024 Mar; 14(1):7546. PubMed ID: 38555301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Family of graphene-assisted resonant surface optical excitations for terahertz devices.
    Lin IT; Liu JM; Tsai HC; Wu KH; Syu JY; Su CY
    Sci Rep; 2016 Oct; 6():35467. PubMed ID: 27739504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-controlled broadband terahertz absorber based on graphene and Dirac semimetal.
    Xiong H; Ji Q; Bashir T; Yang F
    Opt Express; 2020 Apr; 28(9):13884-13894. PubMed ID: 32403854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiconductor Characterization by Terahertz Excitation Spectroscopy.
    Krotkus A; Nevinskas I; Norkus R
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical method for diffraction analysis and design of perfect-electric-conductor backed graphene ribbon metagratings.
    Rahmanzadeh M; Khavasi A; Rejaei B
    Opt Express; 2021 Aug; 29(18):28935-28952. PubMed ID: 34615013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device.
    Li H; Xu W; Cui Q; Wang Y; Yu J
    Opt Express; 2020 Dec; 28(26):40060-40074. PubMed ID: 33379540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications.
    Mendis R; Mittleman DM
    Opt Express; 2009 Aug; 17(17):14839-50. PubMed ID: 19687963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-deep sub-wavelength mode confinement in nano-scale graphene resonator-coupled waveguides.
    Emadi R; Firouzeh ZH; Safian R; Zeidaabadi Nezhad A
    Appl Opt; 2019 Sep; 58(26):7241-7250. PubMed ID: 31504000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Transparent and Polarization-Maintained Terahertz Plasmonic Metamaterials Based on Metal-Wire-Woven Hole Arrays: Fundamentals and Characterization of Transmission Spectral Peaks.
    You B; Lu JY; Chen PL; Hung TY; Yu CP
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual Otto excitation dynamics and enhanced coupling of light to TE plasmons in graphene.
    Mason DR; Menabde SG; Park N
    Opt Express; 2014 Jan; 22(1):847-58. PubMed ID: 24515044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.