BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35508354)

  • 1. Rampant C-to-U deamination accounts for the intrinsically high mutation rate in SARS-CoV-2 spike gene.
    Liu X; Liu X; Zhou J; Dong Y; Jiang W; Jiang W
    RNA; 2022 Jul; 28(7):917-926. PubMed ID: 35508354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-to-U RNA deamination is the driving force accelerating SARS-CoV-2 evolution.
    Li Y; Hou F; Zhou M; Yang X; Yin B; Jiang W; Xu H
    Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36347544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence Supporting That C-to-U RNA Editing Is the Major Force That Drives SARS-CoV-2 Evolution.
    Wang J; Wu L; Pu X; Liu B; Cao M
    J Mol Evol; 2023 Apr; 91(2):214-224. PubMed ID: 36799984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation profile of over 4500 SARS-CoV-2 isolations reveals prevalent cytosine-to-uridine deamination on viral RNAs.
    Li Y; Yang X; Wang N; Wang H; Yin B; Yang X; Jiang W
    Future Microbiol; 2020 Sep; 15():1343-1352. PubMed ID: 33085541
    [No Abstract]   [Full Text] [Related]  

  • 5. Impact of ADAR-induced editing of minor viral RNA populations on replication and transmission of SARS-CoV-2.
    Ringlander J; Fingal J; Kann H; Prakash K; Rydell G; Andersson M; Martner A; Lindh M; Horal P; Hellstrand K; Kann M
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35064076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of A-to-I RNA editing in infections by RNA viruses: Possible implications for SARS-CoV-2 infection.
    Vlachogiannis NI; Verrou KM; Stellos K; Sfikakis PP; Paraskevis D
    Clin Immunol; 2021 May; 226():108699. PubMed ID: 33639276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness.
    Kim K; Calabrese P; Wang S; Qin C; Rao Y; Feng P; Chen XS
    Sci Rep; 2022 Sep; 12(1):14972. PubMed ID: 36100631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rampant C→U Hypermutation in the Genomes of SARS-CoV-2 and Other Coronaviruses: Causes and Consequences for Their Short- and Long-Term Evolutionary Trajectories.
    Simmonds P
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32581081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The continuing discovery on the evidence for RNA editing in SARS-CoV-2.
    Pu X; Xu Q; Wang J; Liu B
    RNA Biol; 2023 Jan; 20(1):219-222. PubMed ID: 37199468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Mutational Landscape of SARS-CoV-2.
    Saldivar-Espinoza B; Garcia-Segura P; Novau-Ferré N; Macip G; Martínez R; Puigbò P; Cereto-Massagué A; Pujadas G; Garcia-Vallve S
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similarity between mutation spectra in hypermutated genomes of rubella virus and in SARS-CoV-2 genomes accumulated during the COVID-19 pandemic.
    Klimczak LJ; Randall TA; Saini N; Li JL; Gordenin DA
    PLoS One; 2020; 15(10):e0237689. PubMed ID: 33006981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different selection dynamics of S and RdRp between SARS-CoV-2 genomes with and without the dominant mutations.
    Koçhan N; Eskier D; Suner A; Karakülah G; Oktay Y
    Infect Genet Evol; 2021 Jul; 91():104796. PubMed ID: 33667722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The efficacy and safety of SARS-CoV-2 vaccines mRNA1273 and BNT162b2 might be complicated by rampant C-to-U RNA editing.
    Bian Z; Wu Z; Liu N; Jiang X
    J Appl Genet; 2023 May; 64(2):361-365. PubMed ID: 36943642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intra-host mutation rate of acute SARS-CoV-2 infection during the initial pandemic wave.
    El-Haddad K; Adhikari TM; Tu ZJ; Cheng YW; Leng X; Zhang X; Rhoads D; Ko JS; Worley S; Li J; Rubin BP; Esper FP
    Virus Genes; 2023 Oct; 59(5):653-661. PubMed ID: 37310519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insertion-and-Deletion Mutations between the Genomes of SARS-CoV, SARS-CoV-2, and Bat Coronavirus RaTG13.
    Akaishi T
    Microbiol Spectr; 2022 Jun; 10(3):e0071622. PubMed ID: 35658573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of 3.5 million SARS-CoV-2 sequences reveals unique mutational trends with consistent nucleotide and codon frequencies.
    Fumagalli SE; Padhiar NH; Meyer D; Katneni U; Bar H; DiCuccio M; Komar AA; Kimchi-Sarfaty C
    Virol J; 2023 Feb; 20(1):31. PubMed ID: 36812119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational landscape and in silico structure models of SARS-CoV-2 spike receptor binding domain reveal key molecular determinants for virus-host interaction.
    Nelson-Sathi S; Umasankar PK; Sreekumar E; Nair RR; Joseph I; Nori SRC; Philip JS; Prasad R; Navyasree KV; Ramesh S; Pillai H; Ghosh S; Santosh Kumar TR; Pillai MR
    BMC Mol Cell Biol; 2022 Jan; 23(1):2. PubMed ID: 34991443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bias of Asparagine to Lysine mutations in SARS-CoV-2 outside the receptor binding domain affects protein flexibility.
    Boer JC; Pan Q; Holien JK; Nguyen TB; Ascher DB; Plebanski M
    Front Immunol; 2022; 13():954435. PubMed ID: 36569921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergence of European and North American mutant variants of SARS-CoV-2 in South-East Asia.
    Islam OK; Al-Emran HM; Hasan MS; Anwar A; Jahid MIK; Hossain MA
    Transbound Emerg Dis; 2021 Mar; 68(2):824-832. PubMed ID: 32701194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Genetic Variability in ACE2 Expression on the Evolutionary Dynamics of SARS-CoV-2 Spike D614G Mutation.
    Huang SW; Miller SO; Yen CH; Wang SF
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33374416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.