These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35508382)

  • 1. Parametric Cognitive Load Reveals Hidden Costs in the Neural Processing of Perfectly Intelligible Degraded Speech.
    Ritz H; Wild CJ; Johnsrude IS
    J Neurosci; 2022 Jun; 42(23):4619-4628. PubMed ID: 35508382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The eye as a window to the listening brain: neural correlates of pupil size as a measure of cognitive listening load.
    Zekveld AA; Heslenfeld DJ; Johnsrude IS; Versfeld NJ; Kramer SE
    Neuroimage; 2014 Nov; 101():76-86. PubMed ID: 24999040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effortful listening: the processing of degraded speech depends critically on attention.
    Wild CJ; Yusuf A; Wilson DE; Peelle JE; Davis MH; Johnsrude IS
    J Neurosci; 2012 Oct; 32(40):14010-21. PubMed ID: 23035108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive Sentence Context Reduces Listening Effort in Older Adults With and Without Hearing Loss and With High and Low Working Memory Capacity.
    Hunter CR; Humes LE
    Ear Hear; 2022 Jul-Aug 01; 43(4):1164-1177. PubMed ID: 34983897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of vocoding and intelligibility on the cerebral response to speech.
    Strelnikov K; Massida Z; Rouger J; Belin P; Barone P
    BMC Neurosci; 2011 Nov; 12():122. PubMed ID: 22129366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cognitive load during speech perception in noise: the influence of age, hearing loss, and cognition on the pupil response.
    Zekveld AA; Kramer SE; Festen JM
    Ear Hear; 2011; 32(4):498-510. PubMed ID: 21233711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the roles of spectral detail and intonation contour in speech intelligibility: an FMRI study.
    Kyong JS; Scott SK; Rosen S; Howe TB; Agnew ZK; McGettigan C
    J Cogn Neurosci; 2014 Aug; 26(8):1748-63. PubMed ID: 24568205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic richness modulates the neural networks supporting intelligible speech processing.
    Lee YS; Min NE; Wingfield A; Grossman M; Peelle JE
    Hear Res; 2016 Mar; 333():108-117. PubMed ID: 26723103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical characterization of the perception of intelligible and unintelligible speech measured via high-density electroencephalography.
    Utianski RL; Caviness JN; Liss JM
    Brain Lang; 2015 Jan; 140():49-54. PubMed ID: 25513975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking Cognitive Spare Capacity During Speech Perception With EEG/ERP: Effects of Cognitive Load and Sentence Predictability.
    Hunter CR
    Ear Hear; 2020; 41(5):1144-1157. PubMed ID: 32282402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrinsic Cognitive Load Impairs Spoken Word Recognition in High- and Low-Predictability Sentences.
    Hunter CR; Pisoni DB
    Ear Hear; 2018; 39(2):378-389. PubMed ID: 28945658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Listening Effort: How the Cognitive Consequences of Acoustic Challenge Are Reflected in Brain and Behavior.
    Peelle JE
    Ear Hear; 2018; 39(2):204-214. PubMed ID: 28938250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Additional Low-Pass-Filtered Speech on Listening Effort for Noise-Band-Vocoded Speech in Quiet and in Noise.
    Pals C; Sarampalis A; van Dijk M; Başkent D
    Ear Hear; 2019; 40(1):3-17. PubMed ID: 29757801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye Movements Decrease during Effortful Speech Listening.
    Cui ME; Herrmann B
    J Neurosci; 2023 Aug; 43(32):5856-5869. PubMed ID: 37491313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain activity underlying the recovery of meaning from degraded speech: A functional near-infrared spectroscopy (fNIRS) study.
    Wijayasiri P; Hartley DEH; Wiggins IM
    Hear Res; 2017 Aug; 351():55-67. PubMed ID: 28571617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frontotemporal activation differs between perception of simulated cochlear implant speech and speech in background noise: An image-based fNIRS study.
    Defenderfer J; Forbes S; Wijeakumar S; Hedrick M; Plyler P; Buss AT
    Neuroimage; 2021 Oct; 240():118385. PubMed ID: 34256138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating Cortical Responses to Noise-Vocoded Speech in Children with Normal Hearing Using Functional Near-Infrared Spectroscopy (fNIRS).
    Mushtaq F; Wiggins IM; Kitterick PT; Anderson CA; Hartley DEH
    J Assoc Res Otolaryngol; 2021 Dec; 22(6):703-717. PubMed ID: 34581879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing Mechanisms in Hearing-Impaired Listeners: Evidence from Reaction Times and Sentence Interpretation.
    Carroll R; Uslar V; Brand T; Ruigendijk E
    Ear Hear; 2016; 37(6):e391-e401. PubMed ID: 27748664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-echo fMRI can detect activations in inferior temporal lobe during intelligible speech comprehension.
    Halai AD; Parkes LM; Welbourne SR
    Neuroimage; 2015 Nov; 122():214-21. PubMed ID: 26037055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural modelling of the semantic predictability gain under challenging listening conditions.
    Rysop AU; Schmitt LM; Obleser J; Hartwigsen G
    Hum Brain Mapp; 2021 Jan; 42(1):110-127. PubMed ID: 32959939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.