These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35508472)

  • 1. Color-preserving passive radiative cooling for an actively temperature-regulated enclosure.
    Zhu Y; Luo H; Yang C; Qin B; Ghosh P; Kaur S; Shen W; Qiu M; Belov P; Li Q
    Light Sci Appl; 2022 May; 11(1):122. PubMed ID: 35508472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive radiant cooling without sacrificing the aesthetics of objects.
    Dereń PJ
    Light Sci Appl; 2022 Jun; 11(1):192. PubMed ID: 35760788
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Wang W; Zou Q; Wang N; Hong B; Zhang W; Wang GP
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42813-42821. PubMed ID: 34460215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Janus Interface Engineering Boosting Visibly Transparent Radiative Cooling for Energy Saving.
    Li Y; Chen X; Yu L; Pang D; Yan H; Chen M
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4122-4131. PubMed ID: 36642885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive radiative cooling below ambient air temperature under direct sunlight.
    Raman AP; Anoma MA; Zhu L; Rephaeli E; Fan S
    Nature; 2014 Nov; 515(7528):540-4. PubMed ID: 25428501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving thermo-optic properties of smart windows via coupling to radiative coolers.
    Zhang E; Cao Y; Caloz C; Skorobogatiy M
    Appl Opt; 2020 May; 59(13):D210-D220. PubMed ID: 32400644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling.
    Chae D; Lim H; So S; Son S; Ju S; Kim W; Rho J; Lee H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21119-21126. PubMed ID: 33926186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures.
    Perrakis G; Tasolamprou AC; Kenanakis G; Economou EN; Tzortzakis S; Kafesaki M
    Opt Express; 2020 Jun; 28(13):18548-18565. PubMed ID: 32672154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive and Dynamic Phase-Change-Based Radiative Cooling in Outdoor Weather.
    Xu X; Gu J; Zhao H; Zhang X; Dou S; Li Y; Zhao J; Zhan Y; Li X
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14313-14320. PubMed ID: 35302341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-adaptive radiative coating for all-season household thermal regulation.
    Tang K; Dong K; Li J; Gordon MP; Reichertz FG; Kim H; Rho Y; Wang Q; Lin CY; Grigoropoulos CP; Javey A; Urban JJ; Yao J; Levinson R; Wu J
    Science; 2021 Dec; 374(6574):1504-1509. PubMed ID: 34914515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamically Tunable All-Weather Daytime Cellulose Aerogel Radiative Supercooler for Energy-Saving Building.
    Cai C; Wei Z; Ding C; Sun B; Chen W; Gerhard C; Nimerovsky E; Fu Y; Zhang K
    Nano Lett; 2022 May; 22(10):4106-4114. PubMed ID: 35510868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Daytime Radiative Cooler and Near-Ideal Selective Emitter Enabled by Transparent Sapphire Substrate.
    Chae D; Son S; Liu Y; Lim H; Lee H
    Adv Sci (Weinh); 2020 Oct; 7(19):2001577. PubMed ID: 33042765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiative cooling for passive thermal management towards sustainable carbon neutrality.
    Liang J; Wu J; Guo J; Li H; Zhou X; Liang S; Qiu CW; Tao G
    Natl Sci Rev; 2023 Jan; 10(1):nwac208. PubMed ID: 36684522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic-Structure Colored Radiative Coolers for Daytime Subambient Cooling.
    Yu S; Zhang Q; Wang Y; Lv Y; Ma R
    Nano Lett; 2022 Jun; 22(12):4925-4932. PubMed ID: 35686917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Easy Way to Achieve Self-Adaptive Cooling of Passive Radiative Materials.
    Xia Z; Fang Z; Zhang Z; Shi K; Meng Z
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27241-27248. PubMed ID: 32437122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal Photonic Assemblies for Colorful Radiative Cooling.
    Kim HH; Im E; Lee S
    Langmuir; 2020 Jun; 36(23):6589-6596. PubMed ID: 32370514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable Colored Subambient Radiative Coolers Based on a Polymer-Tamm Photonic Structure.
    Huang T; Chen Q; Huang J; Lu Y; Xu H; Zhao M; Xu Y; Song W
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16277-16287. PubMed ID: 36930799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling.
    Chae D; Kim M; Jung PH; Son S; Seo J; Liu Y; Lee BJ; Lee H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8073-8081. PubMed ID: 31990166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A
    Heo SY; Lee GJ; Kim DH; Kim YJ; Ishii S; Kim MS; Seok TJ; Lee BJ; Lee H; Song YM
    Sci Adv; 2020 Sep; 6(36):. PubMed ID: 32917610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.