These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35508555)

  • 1. Implicit versus explicit vector management strategies in models for vector-borne disease epidemiology.
    Demers J; Robertson SL; Bewick S; Fagan WF
    J Math Biol; 2022 May; 84(6):48. PubMed ID: 35508555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid Lagrangian-Eulerian model for vector-borne diseases.
    Gao D; Yuan X
    J Math Biol; 2024 Jun; 89(2):16. PubMed ID: 38890206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities.
    Harvim P; Zhang H; Georgescu P; Zhang L
    Bull Math Biol; 2019 Nov; 81(11):4518-4563. PubMed ID: 31641984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal control for disease vector management in SIT models: an integrodifference equation approach.
    Kura K; Khamis D; El Mouden C; Bonsall MB
    J Math Biol; 2019 May; 78(6):1821-1839. PubMed ID: 30734075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vector-Borne Disease Models with Active and Inactive Vectors: A Simple Way to Consider Biting Behavior.
    Simoy MI; Aparicio JP
    Bull Math Biol; 2021 Dec; 84(1):22. PubMed ID: 34940929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical analysis of a mean-field vector-borne diseases model on complex networks: An edge based compartmental approach.
    Wang X; Yang J
    Chaos; 2020 Jan; 30(1):013103. PubMed ID: 32013474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control.
    Demers J; Bewick S; Agusto F; Caillouët KA; Fagan WF; Robertson SL
    PLoS Comput Biol; 2020 Aug; 16(8):e1008136. PubMed ID: 32822342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Population Dynamics Model of Mosquito-Borne Disease Transmission, Focusing on Mosquitoes' Biased Distribution and Mosquito Repellent Use.
    Aldila D; Seno H
    Bull Math Biol; 2019 Dec; 81(12):4977-5008. PubMed ID: 31595380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competent Hosts and Endemicity of Multi-Host Vector-Borne Diseases.
    Sanabria Malagón C; Vargas Bernal E
    Bull Math Biol; 2019 Nov; 81(11):4470-4483. PubMed ID: 30535844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vector-borne disease models with Lagrangian approach.
    Gao D; Cao L
    J Math Biol; 2024 Jan; 88(2):22. PubMed ID: 38294559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Management of insecticides for use in disease vector control: a global survey.
    van den Berg H; da Silva Bezerra HS; Chanda E; Al-Eryani S; Nagpal BN; Gasimov E; Velayudhan R; Yadav RS
    BMC Infect Dis; 2021 May; 21(1):468. PubMed ID: 34022823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Management of insecticides for use in disease vector control: Lessons from six countries in Asia and the Middle East.
    van den Berg H; Velayudhan R; Yadav RS
    PLoS Negl Trop Dis; 2021 Apr; 15(4):e0009358. PubMed ID: 33930033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Climate change and vector-borne diseases. From knowledge to action].
    Bermúdez-Tamayo C; García Mochón L; Ruiz Azarola A; Lacasaña M
    Gac Sanit; 2023; 37():102271. PubMed ID: 36427389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multisectoral approaches for the control of vector-borne diseases, with particular emphasis on dengue and housing.
    Horstick O; Runge-Ranzinger S
    Trans R Soc Trop Med Hyg; 2019 Dec; 113(12):823-828. PubMed ID: 31034038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of venereal transmission on the dynamics of vertically transmitted viral diseases among mosquitoes.
    Nadim SS; Ghosh I; Martcheva M; Chattopadhyay J
    Math Biosci; 2020 Jul; 325():108366. PubMed ID: 32387647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the role of vector modeling in a minimalistic epidemic model.
    Rashkov P; Venturino E; Aguiar M; Stollenwerk N; W Kooi B
    Math Biosci Eng; 2019 May; 16(5):4314-4338. PubMed ID: 31499664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The COVID-19 pandemic should not derail global vector control efforts.
    Seelig F; Bezerra H; Cameron M; Hii J; Hiscox A; Irish S; Jones RT; Lang T; Lindsay SW; Lowe R; Nyoni TM; Power GM; Quintero J; Stewart-Ibarra AM; Tusting LS; Tytheridge S; Logan JG
    PLoS Negl Trop Dis; 2020 Aug; 14(8):e0008606. PubMed ID: 32866149
    [No Abstract]   [Full Text] [Related]  

  • 18. Spatially explicit multi-criteria decision analysis for managing vector-borne diseases.
    Hongoh V; Hoen AG; Aenishaenslin C; Waaub JP; Bélanger D; Michel P;
    Int J Health Geogr; 2011 Dec; 10():70. PubMed ID: 22206355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host-parasite interactions in vector-borne protozoan infections.
    Baneth G; Bates PA; Olivieri A
    Eur J Protistol; 2020 Oct; 76():125741. PubMed ID: 33147559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymptotic analysis of a vector-borne disease model with the age of infection.
    Wang X; Chen Y; Martcheva M; Rong L
    J Biol Dyn; 2020 Dec; 14(1):332-367. PubMed ID: 32324106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.