These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35508785)

  • 1. A new algebraic approach to genome rearrangement models.
    Terauds V; Sumner J
    J Math Biol; 2022 May; 84(6):49. PubMed ID: 35508785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum Likelihood Estimates of Rearrangement Distance: Implementing a Representation-Theoretic Approach.
    Terauds V; Sumner J
    Bull Math Biol; 2019 Feb; 81(2):535-567. PubMed ID: 30264286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A symmetry-inclusive algebraic approach to genome rearrangement.
    Terauds V; Stevenson J; Sumner J
    J Bioinform Comput Biol; 2021 Dec; 19(6):2140015. PubMed ID: 34806949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum likelihood estimates of pairwise rearrangement distances.
    Serdoz S; Egri-Nagy A; Sumner J; Holland BR; Jarvis PD; Tanaka MM; Francis AR
    J Theor Biol; 2017 Jun; 423():31-40. PubMed ID: 28435014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome Rearrangement Distance with Reversals, Transpositions, and Indels.
    Alexandrino AO; Oliveira AR; Dias U; Dias Z
    J Comput Biol; 2021 Mar; 28(3):235-247. PubMed ID: 33085536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extending the algebraic formalism for genome rearrangements to include linear chromosomes.
    Feijão P; Meidanis J
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):819-31. PubMed ID: 24334378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rearrangement Events on Circular Genomes.
    Stevenson J; Terauds V; Sumner J
    Bull Math Biol; 2023 Sep; 85(11):107. PubMed ID: 37749280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rearrangement distance with reversals, indels, and moves in intergenic regions on signed and unsigned permutations.
    Brito KL; Oliveira AR; Alexandrino AO; Dias U; Dias Z
    J Bioinform Comput Biol; 2023 Apr; 21(2):2350009. PubMed ID: 37104034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal and Transposition Distance on Unbalanced Genomes Using Intergenic Information.
    Alexandrino AO; Oliveira AR; Jean G; Fertin G; Dias U; Dias Z
    J Comput Biol; 2023 Aug; 30(8):861-876. PubMed ID: 37222724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient algorithm for the contig ordering problem under algebraic rearrangement distance.
    Lu CL
    J Comput Biol; 2015 Nov; 22(11):975-87. PubMed ID: 26247343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heuristics for Genome Rearrangement Distance With Replicated Genes.
    Siqueira G; Brito KL; Dias U; Dias Z
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2094-2108. PubMed ID: 34232886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic invariants for genome rearrangements.
    Sankoff D; Blanchette M
    J Comput Biol; 1999; 6(3-4):431-45. PubMed ID: 10582577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computing the Rearrangement Distance of Natural Genomes.
    Bohnenkämper L; Braga MDV; Doerr D; Stoye J
    J Comput Biol; 2021 Apr; 28(4):410-431. PubMed ID: 33393848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum Likelihood Estimation of Symmetric Group-Based Models via Numerical Algebraic Geometry.
    Kosta D; Kubjas K
    Bull Math Biol; 2019 Feb; 81(2):337-360. PubMed ID: 30357599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algebraic double cut and join : A group-theoretic approach to the operator on multichromosomal genomes.
    Bhatia S; Egri-Nagy A; Francis AR
    J Math Biol; 2015 Nov; 71(5):1149-78. PubMed ID: 25502846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial structure of genome rearrangements scenarios.
    Ouangraoua A; Bergeron A
    J Comput Biol; 2010 Sep; 17(9):1129-44. PubMed ID: 20874400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Position and Content Paradigms in Genome Rearrangements: The Wild and Crazy World of Permutations in Genomics.
    Bhatia S; Feijão P; Francis AR
    Bull Math Biol; 2018 Dec; 80(12):3227-3246. PubMed ID: 30288640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorting Permutations by Intergenic Operations.
    Oliveira AR; Jean G; Fertin G; Brito KL; Dias U; Dias Z
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2080-2093. PubMed ID: 33945484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Exact Algorithm for Sorting by Weighted Preserving Genome Rearrangements.
    Hartmann T; Bernt M; Middendorf M
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):52-62. PubMed ID: 29994030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast ancestral gene order reconstruction of genomes with unequal gene content.
    Feijão P; Araujo E
    BMC Bioinformatics; 2016 Nov; 17(Suppl 14):413. PubMed ID: 28185578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.