BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 35508967)

  • 1. Predicting circRNA-drug sensitivity associations via graph attention auto-encoder.
    Deng L; Liu Z; Qian Y; Zhang J
    BMC Bioinformatics; 2022 May; 23(1):160. PubMed ID: 35508967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting circRNA-drug sensitivity associations by learning multimodal networks using graph auto-encoders and attention mechanism.
    Yang B; Chen H
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36617209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MNCLCDA: predicting circRNA-drug sensitivity associations by using mixed neighbourhood information and contrastive learning.
    Li G; Zeng F; Luo J; Liang C; Xiao Q
    BMC Med Inform Decis Mak; 2023 Dec; 23(1):291. PubMed ID: 38110886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information.
    Wang Y; Liu X; Shen Y; Song X; Wang T; Shang X; Peng J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association prediction of CircRNAs and diseases using multi-homogeneous graphs and variational graph auto-encoder.
    Fu Y; Yang R; Zhang L
    Comput Biol Med; 2022 Dec; 151(Pt A):106289. PubMed ID: 36401973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning.
    Zhang Y; Wang Z; Wei H; Chen M
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning.
    Li G; Lin Y; Luo J; Xiao Q; Liang C
    Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network.
    Bian C; Lei XJ; Wu FX
    Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34070678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations.
    Ji C; Liu Z; Wang Y; Ni J; Zheng C
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DPMGCDA: Deciphering circRNA-Drug Sensitivity Associations with Dual Perspective Learning and Path-Masked Graph Autoencoder.
    Luo Y; Deng L
    J Chem Inf Model; 2024 May; 64(10):4359-4372. PubMed ID: 38745420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iCDA-CMG: identifying circRNA-disease associations by federating multi-similarity fusion and collective matrix completion.
    Xiao Q; Zhong J; Tang X; Luo J
    Mol Genet Genomics; 2021 Jan; 296(1):223-233. PubMed ID: 33159254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SAGCN: Using graph convolutional network with subgraph-aware for circRNA-drug sensitivity identification.
    Sun W; Ren C; Xu J; Zhang P
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Jun; PP():. PubMed ID: 38885113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMPCDA: Prediction of circRNA-disease associations by utilizing attention mechanisms on metapaths.
    Lu P; Zhang W; Wu J
    Comput Biol Chem; 2024 Feb; 108():107989. PubMed ID: 38016366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KFDAE: CircRNA-Disease Associations Prediction Based on Kernel Fusion and Deep Auto-Encoder.
    Kang WY; Gao YL; Wang Y; Li F; Liu JX
    IEEE J Biomed Health Inform; 2024 May; 28(5):3178-3185. PubMed ID: 38408006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification.
    Li G; Li Y; Liang C; Luo J
    Brief Funct Genomics; 2023 Dec; ():. PubMed ID: 38061910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework.
    Xiao Q; Luo J; Dai J
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2661-2669. PubMed ID: 30629521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LMGATCDA: Graph Neural Network With Labeling Trick for Predicting circRNA-Disease Associations.
    Wang W; Han P; Li Z; Nie R; Wang K; Wang L; Liao H
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(2):289-300. PubMed ID: 38231821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.