These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35509609)

  • 1. Inference for epidemic models with time-varying infection rates: Tracking the dynamics of oak processionary moth in the UK.
    Wadkin LE; Branson J; Hoppit A; Parker NG; Golightly A; Baggaley AW
    Ecol Evol; 2022 May; 12(5):e8871. PubMed ID: 35509609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dermal and Inhalation Exposure of Workers during Control of Oak Processionary Moth (OPM) by Spray Applications.
    Roitzsch M; Schäferhenrich A; Baumgärtel A; Ludwig-Fischer K; Hebisch R; Göen T
    Ann Work Expo Health; 2019 Mar; 63(3):294-304. PubMed ID: 30753273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The oak processionary caterpillar as the cause of an epidemic airborne disease: survey and analysis.
    Maier H; Spiegel W; Kinaciyan T; Krehan H; Cabaj A; Schopf A; Hönigsmann H
    Br J Dermatol; 2003 Nov; 149(5):990-7. PubMed ID: 14632804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Public Health Adaptation to Climate Change: An Explorative Study on the Development of Adaptation Strategies Relating to the Oak Processionary Moth in The Netherlands.
    Buist Y; Bekker M; Vaandrager L; Koelen M
    Int J Environ Res Public Health; 2021 Mar; 18(6):. PubMed ID: 33802715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring epidemiological dynamics with Bayesian coalescent inference: the merits of deterministic and stochastic models.
    Popinga A; Vaughan T; Stadler T; Drummond AJ
    Genetics; 2015 Feb; 199(2):595-607. PubMed ID: 25527289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian inference in an extended SEIR model with nonparametric disease transmission rate: an application to the Ebola epidemic in Sierra Leone.
    Frasso G; Lambert P
    Biostatistics; 2016 Oct; 17(4):779-92. PubMed ID: 27324411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of basic reproduction number of the Middle East respiratory syndrome coronavirus (MERS-CoV) during the outbreak in South Korea, 2015.
    Chang HJ
    Biomed Eng Online; 2017 Jun; 16(1):79. PubMed ID: 28610609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing inference of the basic reproduction number in an SIR model incorporating a growth-scaling parameter.
    Ganyani T; Faes C; Chowell G; Hens N
    Stat Med; 2018 Dec; 37(29):4490-4506. PubMed ID: 30117184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the drift potential of two application methods for the control of oak processionary moths with biocidal products in an oak avenue.
    Langkamp-Wedde T; Rautmann D; von Hörsten D; Wegener JK
    Sci Total Environ; 2020 Feb; 704():135313. PubMed ID: 31787302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling under-reporting in epidemics.
    Gamado KM; Streftaris G; Zachary S
    J Math Biol; 2014 Sep; 69(3):737-65. PubMed ID: 23942791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled Human-Environment Dynamics of Forest Pest Spread and Control in a Multi-Patch, Stochastic Setting.
    Ali Q; Bauch CT; Anand M
    PLoS One; 2015; 10(10):e0139353. PubMed ID: 26430902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landscape epidemiology and control of pathogens with cryptic and long-distance dispersal: sudden oak death in northern Californian forests.
    Filipe JA; Cobb RC; Meentemeyer RK; Lee CA; Valachovic YS; Cook AR; Rizzo DM; Gilligan CA
    PLoS Comput Biol; 2012 Jan; 8(1):e1002328. PubMed ID: 22241973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing the time-varying drivers of an epidemic using stochastic dynamical systems.
    Dureau J; Kalogeropoulos K; Baguelin M
    Biostatistics; 2013 Jul; 14(3):541-55. PubMed ID: 23292757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Markov chain Monte Carlo forward projection for statistical analysis in epidemic modelling of human papillomavirus.
    Korostil IA; Peters GW; Cornebise J; Regan DG
    Stat Med; 2013 May; 32(11):1917-53. PubMed ID: 22961869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Range-Expansion in Processionary Moths and Biological Control.
    de Boer JG; Harvey JA
    Insects; 2020 Apr; 11(5):. PubMed ID: 32353938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the basic reproduction number for single-strain dengue fever epidemics.
    Khan A; Hassan M; Imran M
    Infect Dis Poverty; 2014; 3():12. PubMed ID: 24708869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A versatile web app for identifying the drivers of COVID-19 epidemics.
    Getz WM; Salter R; Luisa Vissat L; Horvitz N
    J Transl Med; 2021 Mar; 19(1):109. PubMed ID: 33726787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Variation in Thaumetopoea pityocampa infestation rate of Aleppo pine: Effect on dendrometric parameters in the Djelfa region forests (Saharan Atlas, Algeria)].
    Mecheri H; Kouidri M; Boukheroufa-Sakraoui F; Adamou AE
    C R Biol; 2018; 341(7-8):380-386. PubMed ID: 30177499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fock-space approach to stochastic susceptible-infected-recovered models.
    de Souza DB; Araújo HA; Duarte-Filho GC; Gaffney EA; Santos FAN; Raposo EP
    Phys Rev E; 2022 Jul; 106(1-1):014136. PubMed ID: 35974542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of partially observed epidemics through Bayesian inference: application to COVID-19.
    Safta C; Ray J; Sargsyan K
    Comput Mech; 2020; 66(5):1109-1129. PubMed ID: 33041410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.