BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 35509686)

  • 1. FAME: Fragment-based Conditional Molecular Generation for Phenotypic Drug Discovery.
    Pham TH; Xie L; Zhang P
    Proc SIAM Int Conf Data Min; 2022; 2022():720-728. PubMed ID: 35509686
    [No Abstract]   [Full Text] [Related]  

  • 2. Conditional Molecular Design with Deep Generative Models.
    Kang S; Cho K
    J Chem Inf Model; 2019 Jan; 59(1):43-52. PubMed ID: 30016587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragment-based deep molecular generation using hierarchical chemical graph representation and multi-resolution graph variational autoencoder.
    Gao Z; Wang X; Blumenfeld Gaines B; Shi X; Bi J; Song M
    Mol Inform; 2023 May; 42(5):e2200215. PubMed ID: 36764926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-objective de novo drug design with conditional graph generative model.
    Li Y; Zhang L; Liu Z
    J Cheminform; 2018 Jul; 10(1):33. PubMed ID: 30043127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MGCVAE: Multi-Objective Inverse Design via Molecular Graph Conditional Variational Autoencoder.
    Lee M; Min K
    J Chem Inf Model; 2022 Jun; 62(12):2943-2950. PubMed ID: 35666276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CMGN: a conditional molecular generation net to design target-specific molecules with desired properties.
    Yang M; Sun H; Liu X; Xue X; Deng Y; Wang X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37193672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation.
    Kwon Y; Yoo J; Choi YS; Son WJ; Lee D; Kang S
    J Cheminform; 2019 Nov; 11(1):70. PubMed ID: 33430985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico.
    Kadurin A; Nikolenko S; Khrabrov K; Aliper A; Zhavoronkov A
    Mol Pharm; 2017 Sep; 14(9):3098-3104. PubMed ID: 28703000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder.
    Li C; Yao J; Wei W; Niu Z; Zeng X; Li J; Wang J
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):4852-4861. PubMed ID: 35171779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular generative model based on conditional variational autoencoder for de novo molecular design.
    Lim J; Ryu S; Kim JW; Kim WY
    J Cheminform; 2018 Jul; 10(1):31. PubMed ID: 29995272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Objective Drug Design Based on Graph-Fragment Molecular Representation and Deep Evolutionary Learning.
    Mukaidaisi M; Vu A; Grantham K; Tchagang A; Li Y
    Front Pharmacol; 2022; 13():920747. PubMed ID: 35860028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Deep Learning in Molecule Generation and Molecular Property Prediction.
    Walters WP; Barzilay R
    Acc Chem Res; 2021 Jan; 54(2):263-270. PubMed ID: 33370107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cMolGPT: A Conditional Generative Pre-Trained Transformer for Target-Specific De Novo Molecular Generation.
    Wang Y; Zhao H; Sciabola S; Wang W
    Molecules; 2023 May; 28(11):. PubMed ID: 37298906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo drug design by iterative multiobjective deep reinforcement learning with graph-based molecular quality assessment.
    Fang Y; Pan X; Shen HB
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36961341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular substructure tree generative model for de novo drug design.
    Wang S; Song T; Zhang S; Jiang M; Wei Z; Li Z
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small molecule generation via disentangled representation learning.
    Du Y; Guo X; Wang Y; Shehu A; Zhao L
    Bioinformatics; 2022 Jun; 38(12):3200-3208. PubMed ID: 35511125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An equivariant generative framework for molecular graph-structure Co-design.
    Zhang Z; Liu Q; Lee CK; Hsieh CY; Chen E
    Chem Sci; 2023 Aug; 14(31):8380-8392. PubMed ID: 37564414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UnCorrupt SMILES: a novel approach to de novo design.
    Schoenmaker L; BĂ©quignon OJM; Jespers W; van Westen GJP
    J Cheminform; 2023 Feb; 15(1):22. PubMed ID: 36788579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRIOMPHE: Transcriptome-Based Inference and Generation of Molecules with Desired Phenotypes by Machine Learning.
    Kaitoh K; Yamanishi Y
    J Chem Inf Model; 2021 Sep; 61(9):4303-4320. PubMed ID: 34528432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.