BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 35509686)

  • 21. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CONSMI: Contrastive Learning in the Simplified Molecular Input Line Entry System Helps Generate Better Molecules.
    Qian Y; Shi M; Zhang Q
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38276573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks.
    Hu C; Li S; Yang C; Chen J; Xiong Y; Fan G; Liu H; Hong L
    J Cheminform; 2023 Oct; 15(1):91. PubMed ID: 37794460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders.
    Shayakhmetov R; Kuznetsov M; Zhebrak A; Kadurin A; Nikolenko S; Aliper A; Polykovskiy D
    Front Pharmacol; 2020; 11():269. PubMed ID: 32362822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sc2Mol: a scaffold-based two-step molecule generator with variational autoencoder and transformer.
    Liao Z; Xie L; Mamitsuka H; Zhu S
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36576008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generating 3D molecules conditional on receptor binding sites with deep generative models.
    Ragoza M; Masuda T; Koes DR
    Chem Sci; 2022 Mar; 13(9):2701-2713. PubMed ID: 35356675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. De novo generation of dual-target ligands using adversarial training and reinforcement learning.
    Lu F; Li M; Min X; Li C; Zeng X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNMG: Deep molecular generative model by fusion of 3D information for de novo drug design.
    Song T; Ren Y; Wang S; Han P; Wang L; Li X; Rodriguez-Patón A
    Methods; 2023 Mar; 211():10-22. PubMed ID: 36764588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of Training and Seed Bias in Small Molecules Generated with a Conditional Graph-Based Variational Autoencoder─Insights for Practical AI-Driven Molecule Generation.
    Kang SG; Morrone JA; Weber JK; Cornell WD
    J Chem Inf Model; 2022 Feb; 62(4):801-816. PubMed ID: 35130440
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Matsukiyo Y; Yamanaka C; Yamanishi Y
    J Chem Inf Model; 2024 Apr; 64(7):2345-2355. PubMed ID: 37768595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generative Model for Proposing Drug Candidates Satisfying Anticancer Properties Using a Conditional Variational Autoencoder.
    Joo S; Kim MS; Yang J; Park J
    ACS Omega; 2020 Aug; 5(30):18642-18650. PubMed ID: 32775866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A flexible data-free framework for structure-based
    Du H; Jiang D; Zhang O; Wu Z; Gao J; Zhang X; Wang X; Deng Y; Kang Y; Li D; Pan P; Hsieh CY; Hou T
    Chem Sci; 2023 Nov; 14(43):12166-12181. PubMed ID: 37969589
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Staker J; Marshall K; Leswing K; Robertson T; Halls MD; Goldberg A; Morisato T; Maeshima H; Ando T; Arai H; Sasago M; Fujii E; Matsuzawa NN
    J Phys Chem A; 2022 Sep; 126(34):5837-5852. PubMed ID: 35984470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. VGAE-MCTS: A New Molecular Generative Model Combining the Variational Graph Auto-Encoder and Monte Carlo Tree Search.
    Iwata H; Nakai T; Koyama T; Matsumoto S; Kojima R; Okuno Y
    J Chem Inf Model; 2023 Dec; 63(23):7392-7400. PubMed ID: 37993764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated Generation of Novel Fragments Using Screening Data, a Dual SMILES Autoencoder, Transfer Learning and Syntax Correction.
    Bilsland AE; McAulay K; West R; Pugliese A; Bower J
    J Chem Inf Model; 2021 Jun; 61(6):2547-2559. PubMed ID: 34029470
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Krishnan SR; Bung N; Vangala SR; Srinivasan R; Bulusu G; Roy A
    J Chem Inf Model; 2022 Nov; 62(21):5100-5109. PubMed ID: 34792338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interpretable Machine Learning Models for Molecular Design of Tyrosine Kinase Inhibitors Using Variational Autoencoders and Perturbation-Based Approach of Chemical Space Exploration.
    Krishnan K; Kassab R; Agajanian S; Verkhivker G
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Generative Models for Molecular Science.
    Jørgensen PB; Schmidt MN; Winther O
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29405647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geometry-Complete Diffusion for 3D Molecule Generation and Optimization.
    Morehead A; Cheng J
    ArXiv; 2024 May; ():. PubMed ID: 36798459
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Atance SR; Diez JV; Engkvist O; Olsson S; Mercado R
    J Chem Inf Model; 2022 Oct; 62(20):4863-4872. PubMed ID: 36219571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.