These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35510185)

  • 1. scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation.
    Osorio D; Zhong Y; Li G; Xu Q; Yang Y; Tian Y; Chapkin RS; Huang JZ; Cai JJ
    Patterns (N Y); 2022 Mar; 3(3):100434. PubMed ID: 35510185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks.
    Yang Y; Li G; Zhong Y; Xu Q; Chen BJ; Lin YT; Chapkin RS; Cai JJ
    Nucleic Acids Res; 2023 Jul; 51(13):6578-6592. PubMed ID: 37246643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting single-cell gene regulatory network reconstruction via bulk-cell transcriptomic data.
    Shu H; Ding F; Zhou J; Xue Y; Zhao D; Zeng J; Ma J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.
    Chen G; Liu ZP
    Bioinformatics; 2022 Sep; 38(19):4522-4529. PubMed ID: 35961023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single_cell_GRN: gene regulatory network identification based on supervised learning method and Single-cell RNA-seq data.
    Yang B; Bao W; Chen B; Song D
    BioData Min; 2022 Jun; 15(1):13. PubMed ID: 35690842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PKI: A bioinformatics method of quantifying the importance of nodes in gene regulatory network via a pseudo knockout index.
    Wang Y; Liu C; Qiao X; Han X; Liu ZP
    Biochim Biophys Acta Gene Regul Mech; 2023 Jun; 1866(2):194911. PubMed ID: 36804477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations.
    Lei Y; Huang XT; Guo X; Hang Katie Chan K; Gao L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
    Huang Z; Wang J; Lu X; Mohd Zain A; Yu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data.
    Osorio D; Zhong Y; Li G; Huang JZ; Cai JJ
    Patterns (N Y); 2020 Dec; 1(9):100139. PubMed ID: 33336197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scTIGER: A Deep-Learning Method for Inferring Gene Regulatory Networks from Case versus Control scRNA-seq Datasets.
    Dautle M; Zhang S; Chen Y
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepDRIM: a deep neural network to reconstruct cell-type-specific gene regulatory network using single-cell RNA-seq data.
    Chen J; Cheong C; Lan L; Zhou X; Liu J; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34424948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inference of Gene Regulatory Network from Single-Cell Transcriptomic Data Using pySCENIC.
    Kumar N; Mishra B; Athar M; Mukhtar S
    Methods Mol Biol; 2021; 2328():171-182. PubMed ID: 34251625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. dynDeepDRIM: a dynamic deep learning model to infer direct regulatory interactions using time-course single-cell gene expression data.
    Xu Y; Chen J; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36168811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal design of gene knockout experiments for gene regulatory network inference.
    Ud-Dean SM; Gunawan R
    Bioinformatics; 2016 Mar; 32(6):875-83. PubMed ID: 26568633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GRACE: Unveiling Gene Regulatory Networks With Causal Mechanistic Graph Neural Networks in Single-Cell RNA-Sequencing Data.
    Wang JC; Chen YJ; Zou Q
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; PP():. PubMed ID: 38896510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data.
    Qi Y; Guo Y; Jiao H; Shang X
    BMC Bioinformatics; 2020 Jun; 21(1):240. PubMed ID: 32527285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets.
    Zhang S; Pyne S; Pietrzak S; Halberg S; McCalla SG; Siahpirani AF; Sridharan R; Roy S
    Nat Commun; 2023 May; 14(1):3064. PubMed ID: 37244909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions.
    Shojaee A; Huang SC
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37897702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model.
    Tan Z; Chen X; Zuo J; Fu S; Wang H; Wang J
    J Transl Med; 2023 Mar; 21(1):223. PubMed ID: 36973787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling gene regulatory networks using neural network architectures.
    Shu H; Zhou J; Lian Q; Li H; Zhao D; Zeng J; Ma J
    Nat Comput Sci; 2021 Jul; 1(7):491-501. PubMed ID: 38217125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.