These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35510557)

  • 1. Electrochemistry and Reactivity of Chelation-stabilized Hypervalent Bromine(III) Compounds.
    Mohebbati N; Sokolovs I; Woite P; Lõkov M; Parman E; Ugandi M; Leito I; Roemelt M; Suna E; Francke R
    Chemistry; 2022 Jul; 28(42):e202200974. PubMed ID: 35510557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Generation of Hypervalent Bromine(III) Compounds.
    Sokolovs I; Mohebbati N; Francke R; Suna E
    Angew Chem Int Ed Engl; 2021 Jul; 60(29):15832-15837. PubMed ID: 33894098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung.
    Hari DP; Caramenti P; Waser J
    Acc Chem Res; 2018 Dec; 51(12):3212-3225. PubMed ID: 30485071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iodine(III) Reagents in Radical Chemistry.
    Wang X; Studer A
    Acc Chem Res; 2017 Jul; 50(7):1712-1724. PubMed ID: 28636313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Palladium-Catalyzed Oxidative Coupling Reactions Using Hypervalent Iodine Reagents.
    Shetgaonkar SE; Raju A; China H; Takenaga N; Dohi T; Singh FV
    Front Chem; 2022; 10():909250. PubMed ID: 35844643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Synthesis of hypervalent organo-λ(3)-bromanes and their reactions by using leaving group ability of λ(3)-bromanyl group].
    Miyamoto K
    Yakugaku Zasshi; 2014; 134(12):1287-300. PubMed ID: 25452238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Synthesis of Dimeric λ
    Sokolovs I; Suna E
    Org Lett; 2023 Mar; 25(12):2047-2052. PubMed ID: 36944352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypervalent-Iodine(III)-Mediated Oxidative Methodology for the Synthesis of Fused Triazoles.
    Kamal R; Kumar V; Kumar R
    Chem Asian J; 2016 Jul; 11(14):1988-2000. PubMed ID: 27123538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic applications of pseudocyclic hypervalent iodine compounds.
    Yoshimura A; Yusubov MS; Zhdankin VV
    Org Biomol Chem; 2016 Jun; 14(21):4771-81. PubMed ID: 27143521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchtop-Stable Hypervalent Bromine(III) Compounds: Versatile Strategy and Platform for Air- and Moisture-Stable λ
    Miyamoto K; Saito M; Tsuji S; Takagi T; Shiro M; Uchiyama M; Ochiai M
    J Am Chem Soc; 2021 Jun; 143(25):9327-9331. PubMed ID: 34125513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypervalent Iodine Reagents in Palladium-Catalyzed Oxidative Cross-Coupling Reactions.
    Shetgaonkar SE; Singh FV
    Front Chem; 2020; 8():705. PubMed ID: 33134246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Halogen bonding in hypervalent iodine and bromine derivatives: halonium salts.
    Cavallo G; Murray JS; Politzer P; Pilati T; Ursini M; Resnati G
    IUCrJ; 2017 Jul; 4(Pt 4):411-419. PubMed ID: 28875028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct cyanation of heteroaromatic compounds mediated by hypervalent iodine(III) reagents: In situ generation of PhI(III)-CN species and their cyano transfer.
    Dohi T; Morimoto K; Takenaga N; Goto A; Maruyama A; Kiyono Y; Tohma H; Kita Y
    J Org Chem; 2007 Jan; 72(1):109-16. PubMed ID: 17194088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous-Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications.
    Elsherbini M; Winterson B; Alharbi H; Folgueiras-Amador AA; Génot C; Wirth T
    Angew Chem Int Ed Engl; 2019 Jul; 58(29):9811-9815. PubMed ID: 31050149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of New Radical-mediated Selective Reactions Promoted by Hypervalent Iodine(III) Reagents.
    Matsumoto A; Lee HJ; Maruoka K
    Chem Rec; 2020 Nov; ():. PubMed ID: 33210803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypervalent iodine(III)-mediated oxidative decarboxylation of β,γ-unsaturated carboxylic acids.
    Kiyokawa K; Yahata S; Kojima T; Minakata S
    Org Lett; 2014 Sep; 16(17):4646-9. PubMed ID: 25162482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Synthetic Applications of Hypervalent Iodine Compounds.
    Yoshimura A; Zhdankin VV
    Chem Rev; 2016 Mar; 116(5):3328-435. PubMed ID: 26861673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic Diaryl λ
    Lanzi M; Dherbassy Q; Wencel-Delord J
    Angew Chem Int Ed Engl; 2021 Jun; 60(27):14852-14857. PubMed ID: 33901330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palladium-Catalyzed Organic Reactions Involving Hypervalent Iodine Reagents.
    Shetgaonkar SE; Mamgain R; Kikushima K; Dohi T; Singh FV
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35745020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Reactivity of N-Heterocyclic Alkynyl Hypervalent Iodine Reagents.
    Le Du E; Duhail T; Wodrich MD; Scopelliti R; Fadaei-Tirani F; Anselmi E; Magnier E; Waser J
    Chemistry; 2021 Jul; 27(42):10979-10986. PubMed ID: 33978974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.