These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 35510799)

  • 21. Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots.
    Zeier J; Ruel K; Ryser U; Schreiber L
    Planta; 1999 Jul; 209(1):1-12. PubMed ID: 10467026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution.
    Kotula L; Ranathunge K; Schreiber L; Steudle E
    J Exp Bot; 2009; 60(7):2155-67. PubMed ID: 19443620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular lipids of Camelina sativa: Characterization of cutin and suberin reveals typical polyester monomers and unusual dicarboxylic fatty acids.
    Razeq FM; Kosma DK; França D; Rowland O; Molina I
    Phytochemistry; 2021 Apr; 184():112665. PubMed ID: 33524853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bundle sheath suberization in grass leaves: multiple barriers to characterization.
    Mertz RA; Brutnell TP
    J Exp Bot; 2014 Jul; 65(13):3371-80. PubMed ID: 24659485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Precursor biosynthesis regulation of lignin, suberin and cutin.
    Xin A; Herburger K
    Protoplasma; 2021 Nov; 258(6):1171-1178. PubMed ID: 34120228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants.
    Wang P; Calvo-Polanco M; Reyt G; Barberon M; Champeyroux C; Santoni V; Maurel C; Franke RB; Ljung K; Novak O; Geldner N; Boursiac Y; Salt DE
    Sci Rep; 2019 Mar; 9(1):4227. PubMed ID: 30862916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Primary Fatty Alcohols Are Major Components of Suberized Root Tissues of Arabidopsis in the Form of Alkyl Hydroxycinnamates.
    Delude C; Fouillen L; Bhar P; Cardinal MJ; Pascal S; Santos P; Kosma DK; Joubès J; Rowland O; Domergue F
    Plant Physiol; 2016 Jul; 171(3):1934-50. PubMed ID: 27231100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suberin-associated fatty alcohols in Arabidopsis: distributions in roots and contributions to seed coat barrier properties.
    Vishwanath SJ; Kosma DK; Pulsifer IP; Scandola S; Pascal S; Joubès J; Dittrich-Domergue F; Lessire R; Rowland O; Domergue F
    Plant Physiol; 2013 Nov; 163(3):1118-32. PubMed ID: 24019425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues.
    Rains MK; Gardiyehewa de Silva ND; Molina I
    Tree Physiol; 2018 Mar; 38(3):340-361. PubMed ID: 28575526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suberin: the biopolyester at the frontier of plants.
    Graça J
    Front Chem; 2015; 3():62. PubMed ID: 26579510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Building lipid barriers: biosynthesis of cutin and suberin.
    Pollard M; Beisson F; Li Y; Ohlrogge JB
    Trends Plant Sci; 2008 May; 13(5):236-46. PubMed ID: 18440267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types.
    Kosma DK; Murmu J; Razeq FM; Santos P; Bourgault R; Molina I; Rowland O
    Plant J; 2014 Oct; 80(2):216-29. PubMed ID: 25060192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suberin--a biopolyester forming apoplastic plant interfaces.
    Franke R; Schreiber L
    Curr Opin Plant Biol; 2007 Jun; 10(3):252-9. PubMed ID: 17434790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of Extracellular Cell Wall Lipids: Wax, Cutin, and Suberin in Leaves, Roots, Fruits, and Seeds.
    Baales J; Zeisler-Diehl VV; Schreiber L
    Methods Mol Biol; 2021; 2295():275-293. PubMed ID: 34047982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The exodermis: a variable apoplastic barrier.
    Hose E; Clarkson DT; Steudle E; Schreiber L; Hartung W
    J Exp Bot; 2001 Dec; 52(365):2245-64. PubMed ID: 11709575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of suberin monomers from the multiseriate exodermis of Iris germanica during maturation under differing growth conditions.
    Meyer CJ; Peterson CA; Bernards MA
    Planta; 2011 Apr; 233(4):773-86. PubMed ID: 21197545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solving the puzzles of cutin and suberin polymer biosynthesis.
    Beisson F; Li-Beisson Y; Pollard M
    Curr Opin Plant Biol; 2012 Jun; 15(3):329-37. PubMed ID: 22465132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The endodermis, a tightly controlled barrier for nutrients.
    Doblas VG; Geldner N; Barberon M
    Curr Opin Plant Biol; 2017 Oct; 39():136-143. PubMed ID: 28750257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors.
    Tylová E; Pecková E; Blascheová Z; Soukup A
    Ann Bot; 2017 Jul; 120(1):71-85. PubMed ID: 28605408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant root suberin: A layer of defence against biotic and abiotic stresses.
    Chen A; Liu T; Wang Z; Chen X
    Front Plant Sci; 2022; 13():1056008. PubMed ID: 36507443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.