BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35510825)

  • 21. Hypervalent phenyl-λ3-iodane-mediated para-selective aromatic fluorination of 3-phenylpropyl ethers.
    Saito M; Miyamoto K; Ochiai M
    Chem Commun (Camb); 2011 Mar; 47(12):3410-2. PubMed ID: 21340054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypervalent Iodine(III)-Catalyzed Balz-Schiemann Fluorination under Mild Conditions.
    Xing B; Ni C; Hu J
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9896-9900. PubMed ID: 29932480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intramolecular Alkene Fluoroarylation of Phenolic Ethers Enabled by Electrochemically Generated Iodane.
    Doobary S; Poole DL; Lennox AJJ
    J Org Chem; 2021 Nov; 86(22):16095-16103. PubMed ID: 34766770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. C-N Axial Chiral Hypervalent Iodine Reagents: Catalytic Stereoselective α-Oxytosylation of Ketones.
    Alharbi H; Elsherbini M; Qurban J; Wirth T
    Chemistry; 2021 Mar; 27(13):4317-4321. PubMed ID: 33428245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Updates on Electrogenerated Hypervalent Iodine Derivatives and Their Applications as Mediators in Organic Electrosynthesis.
    Chen C; Wang X; Yang T
    Front Chem; 2022; 10():883474. PubMed ID: 35494647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrophilic fluorination using a hypervalent iodine reagent derived from fluoride.
    Geary GC; Hope EG; Singh K; Stuart AM
    Chem Commun (Camb); 2013 Oct; 49(81):9263-5. PubMed ID: 23998186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intermolecular Palladium-Catalyzed Oxidative Fluorocarbonylation of Unactivated Alkenes: Efficient Access to β-Fluorocarboxylic Esters.
    Qi X; Yu F; Chen P; Liu G
    Angew Chem Int Ed Engl; 2017 Oct; 56(41):12692-12696. PubMed ID: 28787103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct cyanation of heteroaromatic compounds mediated by hypervalent iodine(III) reagents: In situ generation of PhI(III)-CN species and their cyano transfer.
    Dohi T; Morimoto K; Takenaga N; Goto A; Maruyama A; Kiyono Y; Tohma H; Kita Y
    J Org Chem; 2007 Jan; 72(1):109-16. PubMed ID: 17194088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Fluorination/Aryl Migration/Cyclization Cascade for the Metal-Free Synthesis of Fluoro-Benzoxazepines.
    Ulmer A; Brunner C; Arnold AM; Pöthig A; Gulder T
    Chemistry; 2016 Mar; 22(11):3660-4. PubMed ID: 26641801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypervalent Iodine Reagents by Anodic Oxidation: A Powerful Green Synthesis.
    Elsherbini M; Wirth T
    Chemistry; 2018 Sep; 24(51):13399-13407. PubMed ID: 29655209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypervalent iodine(iii) fluorinations of alkenes and diazo compounds: new opportunities in fluorination chemistry.
    Kohlhepp SV; Gulder T
    Chem Soc Rev; 2016 Nov; 45(22):6270-6288. PubMed ID: 27417189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward a General Protocol for Catalytic Oxidative Transformations Using Electrochemically Generated Hypervalent Iodine Species.
    Elsherbini M; Moran WJ
    J Org Chem; 2023 Feb; 88(3):1424-1433. PubMed ID: 36689352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hypervalent iodine mediated intramolecular cyclization of thioformanilides: expeditious approach to 2-substituted benzothiazoles.
    Bose DS; Idrees M
    J Org Chem; 2006 Oct; 71(21):8261-3. PubMed ID: 17025321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flow electrochemistry: a safe tool for fluorine chemistry.
    Winterson B; Rennigholtz T; Wirth T
    Chem Sci; 2021 Jul; 12(26):9053-9059. PubMed ID: 34276934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hypervalent iodine-guided electrophilic substitution:
    Mowdawalla C; Ahmed F; Li T; Pham K; Dave L; Kim G; Hyatt IFD
    Beilstein J Org Chem; 2018; 14():1039-1045. PubMed ID: 29977377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrolytic partial fluorination of organic compounds. 83. Anodic fluorination of N-substituted pyrroles and its synthetic applications to gem-difluorinated heterocyclic compounds.
    Tajima T; Nakajima A; Fuchigami T
    J Org Chem; 2006 Feb; 71(4):1436-41. PubMed ID: 16468791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iodine(III)-Mediated Fluorination/Semipinacol Rearrangement Cascade of 2-Alkylidenecyclobutanol Derivatives: Access to β-Monofluorinated Cyclopropanecarbaldehydes.
    Feng SX; Yang S; Tu FH; Lin PP; Huang LL; Wang H; Huang ZS; Li Q
    J Org Chem; 2021 May; 86(9):6800-6812. PubMed ID: 33899472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intramolecular Fluorocyclizations of Unsaturated Carboxylic Acids with a Stable Hypervalent Fluoroiodane Reagent.
    Geary GC; Hope EG; Stuart AM
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14911-4. PubMed ID: 26450355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism-Dependent Selectivity: Fluorocyclization of Unsaturated Carboxylic Acids or Alcohols by Hypervalent Iodine.
    Su J; Shu S; Li Y; Chen Y; Dong J; Liu Y; Fang Y; Ke Z
    Front Chem; 2022; 10():897828. PubMed ID: 35620652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic stereoselective synthesis involving hypervalent iodine-based chiral auxiliaries.
    Shetgaonkar SE; Singh FV
    Org Biomol Chem; 2023 May; 21(20):4163-4180. PubMed ID: 37132463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.