BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35510835)

  • 1. Reinforcement learning for systems pharmacology-oriented and personalized drug design.
    Tan RK; Liu Y; Xie L
    Expert Opin Drug Discov; 2022 Aug; 17(8):849-863. PubMed ID: 35510835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational discovery of dual-indication multi-target PDE/Kinase inhibitor for precision anti-cancer therapy using structural systems pharmacology.
    Lim H; He D; Qiu Y; Krawczuk P; Sun X; Xie L
    PLoS Comput Biol; 2019 Jun; 15(6):e1006619. PubMed ID: 31206508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Providing data science support for systems pharmacology and its implications to drug discovery.
    Hart T; Xie L
    Expert Opin Drug Discov; 2016; 11(3):241-56. PubMed ID: 26689499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating clinical pharmacology and artificial intelligence: potential benefits, challenges, and role of clinical pharmacologists.
    Singh H; Nim DK; Randhawa AS; Ahluwalia S
    Expert Rev Clin Pharmacol; 2024 Apr; 17(4):381-391. PubMed ID: 38340012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning for synergistic network pharmacology: a comprehensive overview.
    Noor F; Asif M; Ashfaq UA; Qasim M; Tahir Ul Qamar M
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37031957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using quantitative systems pharmacology for novel drug discovery.
    Pérez-Nueno VI
    Expert Opin Drug Discov; 2015 Dec; 10(12):1315-31. PubMed ID: 26328768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence in early drug discovery enabling precision medicine.
    Boniolo F; Dorigatti E; Ohnmacht AJ; Saur D; Schubert B; Menden MP
    Expert Opin Drug Discov; 2021 Sep; 16(9):991-1007. PubMed ID: 34075855
    [No Abstract]   [Full Text] [Related]  

  • 8. Model-Informed Artificial Intelligence: Reinforcement Learning for Precision Dosing.
    Ribba B; Dudal S; Lavé T; Peck RW
    Clin Pharmacol Ther; 2020 Apr; 107(4):853-857. PubMed ID: 31955414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Perspective on Implementing a Quantitative Systems Pharmacology Platform for Drug Discovery and the Advancement of Personalized Medicine.
    Stern AM; Schurdak ME; Bahar I; Berg JM; Taylor DL
    J Biomol Screen; 2016 Jul; 21(6):521-34. PubMed ID: 26962875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional protein micropatterning for drug design and discovery.
    You C; Piehler J
    Expert Opin Drug Discov; 2016; 11(1):105-19. PubMed ID: 26624534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo drug design as GPT language modeling: large chemistry models with supervised and reinforcement learning.
    Ye G
    J Comput Aided Mol Des; 2024 Apr; 38(1):20. PubMed ID: 38647700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Personalized medicine: the impact on chemistry.
    Watkins J; Marsh A; Taylor PC; Singer DR
    Ther Deliv; 2010 Nov; 1(5):651-65. PubMed ID: 22833955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Reinforcement Learning and Simulation as a Path Toward Precision Medicine.
    Petersen BK; Yang J; Grathwohl WS; Cockrell C; Santiago C; An G; Faissol DM
    J Comput Biol; 2019 Jun; 26(6):597-604. PubMed ID: 30681362
    [No Abstract]   [Full Text] [Related]  

  • 14. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Machine Learning in Translational Medicine: Current Status and Future Opportunities.
    Terranova N; Venkatakrishnan K; Benincosa LJ
    AAPS J; 2021 May; 23(4):74. PubMed ID: 34008139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo generation of dual-target ligands using adversarial training and reinforcement learning.
    Lu F; Li M; Min X; Li C; Zeng X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The scientific basis of rational prescribing. A guide to precision clinical pharmacology based on the WHO 6-step method.
    Rongen GA; Marquet P; van Gerven JMA;
    Eur J Clin Pharmacol; 2021 May; 77(5):677-683. PubMed ID: 33210160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling.
    Haderspeck JC; Chuchuy J; Kustermann S; Liebau S; Loskill P
    Expert Opin Drug Discov; 2019 Jan; 14(1):47-57. PubMed ID: 30526132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational approaches for innovative antiepileptic drug discovery.
    Talevi A
    Expert Opin Drug Discov; 2016 Oct; 11(10):1001-16. PubMed ID: 27454246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of drug candidates and repurposing opportunities through compound-target interaction networks.
    Cichonska A; Rousu J; Aittokallio T
    Expert Opin Drug Discov; 2015 Dec; 10(12):1333-45. PubMed ID: 26429153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.