These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 35510837)
1. Characterization of Enzymes Catalyzing the Initial Steps of the β-Lactam Tabtoxin Biosynthesis. Lyu J; Ushimaru R; Abe I Org Lett; 2022 May; 24(18):3337-3341. PubMed ID: 35510837 [TBL] [Abstract][Full Text] [Related]
2. Characterization of dapB, a gene required by Pseudomonas syringae pv. tabaci BR2.024 for lysine and tabtoxinine-beta-lactam biosynthesis. Liu L; Shaw PD J Bacteriol; 1997 Jan; 179(2):507-13. PubMed ID: 8990304 [TBL] [Abstract][Full Text] [Related]
3. DNA sequence and transcriptional analysis of the tblA gene required for tabtoxin biosynthesis by Pseudomonas syringae. Barta TM; Kinscherf TG; Uchytil TF; Willis DK Appl Environ Microbiol; 1993 Feb; 59(2):458-66. PubMed ID: 7679566 [TBL] [Abstract][Full Text] [Related]
4. Functional chararacterization of the enzymes TabB and TabD involved in tabtoxin biosynthesis by Pseudomonas syringae. Manning ME; Danson EJ; Calderone CT Biochem Biophys Res Commun; 2018 Jan; 496(1):212-217. PubMed ID: 29307827 [TBL] [Abstract][Full Text] [Related]
5. Detection of tabtoxin-producing strains of Pseudomonas syringae by PCR. Lydon J; Patterson CD Lett Appl Microbiol; 2001 Mar; 32(3):166-70. PubMed ID: 11264746 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for beta-lactam acetylation. He H; Ding Y; Bartlam M; Sun F; Le Y; Qin X; Tang H; Zhang R; Joachimiak A; Liu J; Zhao N; Rao Z J Mol Biol; 2003 Jan; 325(5):1019-30. PubMed ID: 12527305 [TBL] [Abstract][Full Text] [Related]
7. A possible role for acetylated intermediates in diaminopimelate and tabtoxinine-beta-lactam biosynthesis in Pseudomonas syringae pv. tabaci BR2.024. Liu L; Shaw PD J Bacteriol; 1997 Sep; 179(18):5922-7. PubMed ID: 9294453 [TBL] [Abstract][Full Text] [Related]
8. Regulation of tabtoxin production by the lemA gene in Pseudomonas syringae. Barta TM; Kinscherf TG; Willis DK J Bacteriol; 1992 May; 174(9):3021-9. PubMed ID: 1314808 [TBL] [Abstract][Full Text] [Related]
9. Cloning and expression of the tabtoxin biosynthetic region from Pseudomonas syringae. Kinscherf TG; Coleman RH; Barta TM; Willis DK J Bacteriol; 1991 Jul; 173(13):4124-32. PubMed ID: 1648077 [TBL] [Abstract][Full Text] [Related]
10. Effects of nutritional factors on production of tabtoxin, a phytotoxin, by Pseudomonas syringae pv. tabaci. Dehbi F; Harzallah D; Larous L Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):241-7. PubMed ID: 12425044 [TBL] [Abstract][Full Text] [Related]
11. The biosynthetic gene cluster for the beta-lactam antibiotic tabtoxin in Pseudomonas syringae. Kinscherf TG; Willis DK J Antibiot (Tokyo); 2005 Dec; 58(12):817-21. PubMed ID: 16506699 [TBL] [Abstract][Full Text] [Related]
12. Identification of a lysA-like gene required for tabtoxin biosynthesis and pathogenicity in Pseudomonas syringae pv. tabaci strain PTBR2.024. Engst K; Shaw PD Mol Plant Microbe Interact; 1992; 5(4):322-9. PubMed ID: 1515668 [TBL] [Abstract][Full Text] [Related]
13. Pseudomonas syringae self-protection from tabtoxinine-β-lactam by ligase TblF and acetylase Ttr. Wencewicz TA; Walsh CT Biochemistry; 2012 Oct; 51(39):7712-25. PubMed ID: 22994681 [TBL] [Abstract][Full Text] [Related]
14. L-amino acid ligase from Pseudomonas syringae producing tabtoxin can be used for enzymatic synthesis of various functional peptides. Arai T; Arimura Y; Ishikura S; Kino K Appl Environ Microbiol; 2013 Aug; 79(16):5023-9. PubMed ID: 23770908 [TBL] [Abstract][Full Text] [Related]
15. Chapter 16. Enzymology of beta-lactam compounds with cephem structure produced by actinomycete. Liras P; Demain AL Methods Enzymol; 2009; 458():401-29. PubMed ID: 19374992 [TBL] [Abstract][Full Text] [Related]
16. Lysine catabolism in Streptomyces spp. is primarily through cadaverine: beta-lactam producers also make alpha-aminoadipate. Madduri K; Stuttard C; Vining LC J Bacteriol; 1989 Jan; 171(1):299-302. PubMed ID: 2492500 [TBL] [Abstract][Full Text] [Related]
17. Cloning and characterization of Saccharomyces cerevisiae genes that confer L-methionine sulfoximine and tabtoxin resistance. Marek ET; Dickson RC J Bacteriol; 1987 Jun; 169(6):2440-8. PubMed ID: 2884208 [TBL] [Abstract][Full Text] [Related]
18. Origins of the β-lactam rings in natural products. Tahlan K; Jensen SE J Antibiot (Tokyo); 2013 Jul; 66(7):401-10. PubMed ID: 23531986 [TBL] [Abstract][Full Text] [Related]
19. Influence of amino acid side-chain modification on the uptake system for beta-lactam antibiotics and dipeptides from rabbit small intestine. Kramer W; Dürckheimer W; Girbig F; Gutjahr U; Leipe I; Oekonomopulos R Biochim Biophys Acta; 1990 Oct; 1028(2):174-82. PubMed ID: 2223791 [TBL] [Abstract][Full Text] [Related]
20. Quaternary α,α-2-oxoazepane α-amino acids: synthesis from ornithine-derived β-lactams and incorporation into model dipeptides. Núñez-Villanueva D; Bonache MÁ; Infantes L; García-López MT; Martín-Martínez M; González-Muñiz R J Org Chem; 2011 Aug; 76(16):6592-603. PubMed ID: 21718065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]