These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35510903)

  • 81. Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries.
    Wang K; Liu M; Huang D; Li L; Feng K; Zhao L; Li J; Jiang F
    J Colloid Interface Sci; 2020 Jul; 571():387-397. PubMed ID: 32213356
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Nitrogen and Sulfur Co-Doped Graphene Nanosheets to Improve Anode Materials for Sodium-Ion Batteries.
    Xu X; Zeng H; Han D; Qiao K; Xing W; Rood MJ; Yan Z
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37172-37180. PubMed ID: 30299073
    [TBL] [Abstract][Full Text] [Related]  

  • 83. In Situ-Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries.
    Huang Y; Fang C; Zeng R; Liu Y; Zhang W; Wang Y; Liu Q; Huang Y
    ChemSusChem; 2017 Dec; 10(23):4704-4708. PubMed ID: 28891155
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Hofmann Ni-Pz-Ni Metal-Organic Frameworks Decorated by Graphene Oxide Enabling Lithium Storage with Pseudocapacitance Contribution.
    Wang H; Zhang Y; Tang Y; Gao Y; Liu L; Yang C; Dong S
    Inorg Chem; 2023 Jan; 62(1):238-246. PubMed ID: 36528812
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery.
    Sun R; Wei Q; Li Q; Luo W; An Q; Sheng J; Wang D; Chen W; Mai L
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20902-8. PubMed ID: 26328897
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Porous ZnO/Co
    Cheng E; Huang S; Chen D; Huang R; Wang Q; Hu Z; Jiang Y; Li Z; Zhao B; Chen Z
    Acta Crystallogr C Struct Chem; 2019 Jul; 75(Pt 7):969-978. PubMed ID: 31271386
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe
    Hou BH; Wang YY; Guo JZ; Zhang Y; Ning QL; Yang Y; Li WH; Zhang JP; Wang XL; Wu XL
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3581-3589. PubMed ID: 29303243
    [TBL] [Abstract][Full Text] [Related]  

  • 88. MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems.
    Oveisi M; Asli MA; Mahmoodi NM
    J Hazard Mater; 2018 Apr; 347():123-140. PubMed ID: 29304451
    [TBL] [Abstract][Full Text] [Related]  

  • 89. High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries.
    Zhang J; Yin YX; Guo YG
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27838-44. PubMed ID: 26618232
    [TBL] [Abstract][Full Text] [Related]  

  • 90. MOF/graphene oxide composite as an efficient adsorbent for the removal of organic dyes from aqueous solution.
    Luo S; Wang J
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5521-5528. PubMed ID: 29218576
    [TBL] [Abstract][Full Text] [Related]  

  • 91. High-Capacity Molecular Scale Conversion Anode Enabled by Hybridizing Cluster-Type Framework of High Loading with Amino-Functionalized Graphene.
    Xie J; Zhang Y; Han Y; Li C
    ACS Nano; 2016 May; 10(5):5304-13. PubMed ID: 27116433
    [TBL] [Abstract][Full Text] [Related]  

  • 92. MOF-Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage.
    Li Y; Xu Y; Yang W; Shen W; Xue H; Pang H
    Small; 2018 Jun; 14(25):e1704435. PubMed ID: 29750438
    [TBL] [Abstract][Full Text] [Related]  

  • 93. 3D-Structured Polyoxometalate Microcrystals with Enhanced Rate Capability and Cycle Stability for Lithium-Ion Storage.
    Sun K; Li H; Ye H; Jiang F; Zhu H; Yin J
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18657-18664. PubMed ID: 29747512
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Graphene-Loaded Bi
    Li D; Zhou J; Chen X; Song H
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30379-30387. PubMed ID: 30113813
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Metal-organic framework-derived graphene@nitrogen doped carbon@ultrafine TiO
    Zhang Z; An Y; Xu X; Dong C; Feng J; Ci L; Xiong S
    Chem Commun (Camb); 2016 Oct; 52(87):12810-12812. PubMed ID: 27747337
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Adsorption performance and kinetic study of hierarchical porous Fe-based MOFs for toluene removal.
    Ma X; Wang W; Sun C; Li H; Sun J; Liu X
    Sci Total Environ; 2021 Nov; 793():148622. PubMed ID: 34328958
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Sodium ion intercalation and multi redox behavior of a Keggin type polyoxometalate during [PMo
    Priyadarshini M; Shanmugan S; Kirubakaran KP; Thomas A; Prakash M; Vediappan K
    RSC Adv; 2021 May; 11(32):19378-19386. PubMed ID: 35479221
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A Reduced Graphene Oxide/Disodium Terephthalate Hybrid as a High-Performance Anode for Sodium-Ion Batteries.
    Cao T; Lv W; Zhang SW; Zhang J; Lin Q; Chen X; He Y; Kang FY; Yang QH
    Chemistry; 2017 Nov; 23(65):16586-16592. PubMed ID: 28921698
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Boosting Lithium Storage Properties of MOF Derivatives through a Wet-Spinning Assembled Fiber Strategy.
    Zhang L; Liu W; Shi W; Xu X; Mao J; Li P; Ye C; Yin R; Ye S; Liu X; Cao X; Gao C
    Chemistry; 2018 Sep; 24(52):13792-13799. PubMed ID: 29992663
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode.
    Kang C; Lee Y; Kim I; Hyun S; Lee TH; Yun S; Yoon WS; Moon Y; Lee J; Kim S; Lee HJ
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31018566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.