These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35510957)

  • 1. Chitosan nanoparticles augmented indole-3-acetic acid production by rhizospheric Pseudomonas monteilii.
    Panichikkal J; Mohanan DP; Koramkulam S; Krishnankutty RE
    J Basic Microbiol; 2022 Dec; 62(12):1467-1474. PubMed ID: 35510957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan and Gold Nanoparticles Supplementation for Augmentation of Indole-3-Acetic Acid Production by Rhizospheric Pseudomonas aeruginosa and Plant Growth Enhancement.
    Panichikkal J; Krishnankutty RE
    Curr Microbiol; 2022 May; 79(6):185. PubMed ID: 35524857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogenic Gold Nanoparticle Supplementation to Plant Beneficial Pseudomonas monteilii was Found to Enhance its Plant Probiotic Effect.
    Panichikkal J; Thomas R; John JC; Radhakrishnan EK
    Curr Microbiol; 2019 Apr; 76(4):503-509. PubMed ID: 30805698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of agriculturally useful rhamnolipid profile of Pseudomonas sp. K6 due to the supplementation with chitosan and gold nanoparticles.
    Jishma P; Radhakrishnan EK
    World J Microbiol Biotechnol; 2020 Sep; 36(10):146. PubMed ID: 32880081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles.
    Dimkpa CO; Zeng J; McLean JE; Britt DW; Zhan J; Anderson AJ
    Appl Environ Microbiol; 2012 Mar; 78(5):1404-10. PubMed ID: 22210218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhizobacterial biofilm and plant growth promoting trait enhancement by organic acids and sugars.
    Panichikkal J; Edayileveetil Krishnankutty R
    Biofouling; 2020 Sep; 36(8):990-999. PubMed ID: 33148046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Step Co-Electrodeposition of Copper Nanoparticles-Chitosan Film-Carbon Nanoparticles-Multiwalled Carbon Nanotubes Composite for Electroanalysis of Indole-3-Acetic Acid and Salicylic Acid.
    Kuang Y; Li M; Hu S; Yang L; Liang Z; Wang J; Jiang H; Zhou X; Su Z
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Encapsulated Bacillus licheniformis Supplemented with Chitosan Nanoparticles and Rice Starch for the Control of Sclerotium rolfsii in Capsicum annuum (L.) Seedlings.
    Panichikkal J; Puthiyattil N; Raveendran A; Nair RA; Krishnankutty RE
    Curr Microbiol; 2021 Mar; 78(3):911-919. PubMed ID: 33580333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid.
    Duca D; Rose DR; Glick BR
    Appl Environ Microbiol; 2014 Aug; 80(15):4640-9. PubMed ID: 24837382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS.
    Kang BR; Yang KY; Cho BH; Han TH; Kim IS; Lee MC; Anderson AJ; Kim YC
    Curr Microbiol; 2006 Jun; 52(6):473-6. PubMed ID: 16732458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indole-3-acetic acid in plant-pathogen interactions: a key molecule for in planta bacterial virulence and fitness.
    Cerboneschi M; Decorosi F; Biancalani C; Ortenzi MV; Macconi S; Giovannetti L; Viti C; Campanella B; Onor M; Bramanti E; Tegli S
    Res Microbiol; 2016; 167(9-10):774-787. PubMed ID: 27637152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth.
    Lebrazi S; Niehaus K; Bednarz H; Fadil M; Chraibi M; Fikri-Benbrahim K
    J Genet Eng Biotechnol; 2020 Nov; 18(1):71. PubMed ID: 33175273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm and Biocontrol Modulation of Paenibacillus sp. CCB36 by Supplementation with Zinc Oxide Nanoparticles and Chitosan Nanoparticles.
    Panichikkal J; Jose A; Sreekumaran S; Ashokan AK; Baby CS; Krishnankutty RE
    Appl Biochem Biotechnol; 2022 Apr; 194(4):1606-1620. PubMed ID: 34822058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mutation in the indole-3-acetic acid biosynthesis pathway of Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production.
    Mazzola M; White FF
    J Bacteriol; 1994 Mar; 176(5):1374-82. PubMed ID: 8113177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study.
    Santoro MV; Cappellari LR; Giordano W; Banchio E
    Plant Biol (Stuttg); 2015 Nov; 17(6):1218-26. PubMed ID: 26012535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pterocarpus marsupium Roxb. heartwood extract synthesized chitosan nanoparticles and its biomedical applications.
    Manne AA; K VV; G AK; Mangamuri U; Podha S
    J Genet Eng Biotechnol; 2020 Jul; 18(1):19. PubMed ID: 32627099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria.
    Ahmed M; Stal LJ; Hasnain S
    J Microbiol Biotechnol; 2014 Aug; 24(8):1015-25. PubMed ID: 24705871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Plant Growth-Promoting Rhizobacterium Variovorax boronicumulans CGMCC 4969 Regulates the Level of Indole-3-Acetic Acid Synthesized from Indole-3-Acetonitrile.
    Sun SL; Yang WL; Fang WW; Zhao YX; Guo L; Dai YJ
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884755
    [No Abstract]   [Full Text] [Related]  

  • 19. The excessive production of indole-3-acetic acid and its significance in studies of the biosynthesis of this regulator of plant growth and development.
    Kawaguchi M; Syono K
    Plant Cell Physiol; 1996 Dec; 37(8):1043-8. PubMed ID: 9032962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4.
    Duca DR; Rose DR; Glick BR
    Antonie Van Leeuwenhoek; 2018 Sep; 111(9):1645-1660. PubMed ID: 29492769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.