These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 35511125)
1. Small molecule generation via disentangled representation learning. Du Y; Guo X; Wang Y; Shehu A; Zhao L Bioinformatics; 2022 Jun; 38(12):3200-3208. PubMed ID: 35511125 [TBL] [Abstract][Full Text] [Related]
2. Generating tertiary protein structures via interpretable graph variational autoencoders. Guo X; Du Y; Tadepalli S; Zhao L; Shehu A Bioinform Adv; 2021; 1(1):vbab036. PubMed ID: 36700110 [TBL] [Abstract][Full Text] [Related]
3. Network-principled deep generative models for designing drug combinations as graph sets. Karimi M; Hasanzadeh A; Shen Y Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357 [TBL] [Abstract][Full Text] [Related]
4. Sc2Mol: a scaffold-based two-step molecule generator with variational autoencoder and transformer. Liao Z; Xie L; Mamitsuka H; Zhu S Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36576008 [TBL] [Abstract][Full Text] [Related]
5. Fragment-based deep molecular generation using hierarchical chemical graph representation and multi-resolution graph variational autoencoder. Gao Z; Wang X; Blumenfeld Gaines B; Shi X; Bi J; Song M Mol Inform; 2023 May; 42(5):e2200215. PubMed ID: 36764926 [TBL] [Abstract][Full Text] [Related]
6. Disentangled Representation Learning and Generation With Manifold Optimization. Pandey A; Fanuel M; Schreurs J; Suykens JAK Neural Comput; 2022 Sep; 34(10):2009-2036. PubMed ID: 36027763 [TBL] [Abstract][Full Text] [Related]
7. De Novo Molecule Design by Translating from Reduced Graphs to SMILES. Pogány P; Arad N; Genway S; Pickett SD J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594 [TBL] [Abstract][Full Text] [Related]
8. In Search of Disentanglement in Tandem Mass Spectrometry Datasets. Abram KJ; McCloskey D Biomolecules; 2023 Sep; 13(9):. PubMed ID: 37759743 [TBL] [Abstract][Full Text] [Related]
10. Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently. Kell DB; Samanta S; Swainston N Biochem J; 2020 Dec; 477(23):4559-4580. PubMed ID: 33290527 [TBL] [Abstract][Full Text] [Related]
11. CProMG: controllable protein-oriented molecule generation with desired binding affinity and drug-like properties. Li JN; Yang G; Zhao PC; Wei XX; Shi JY Bioinformatics; 2023 Jun; 39(39 Suppl 1):i326-i336. PubMed ID: 37387157 [TBL] [Abstract][Full Text] [Related]
12. FragNet, a Contrastive Learning-Based Transformer Model for Clustering, Interpreting, Visualizing, and Navigating Chemical Space. Shrivastava AD; Kell DB Molecules; 2021 Apr; 26(7):. PubMed ID: 33916824 [TBL] [Abstract][Full Text] [Related]
19. Exploring Low-Toxicity Chemical Space with Deep Learning for Molecular Generation. Yang Y; Wu Z; Yao X; Kang Y; Hou T; Hsieh CY; Liu H J Chem Inf Model; 2022 Jul; 62(13):3191-3199. PubMed ID: 35713712 [TBL] [Abstract][Full Text] [Related]
20. Disentangled Generation With Information Bottleneck for Enhanced Few-Shot Learning. Dang Z; Luo M; Wang J; Jia C; Yan C; Dai G; Chang X; Zheng Q IEEE Trans Image Process; 2024; 33():3520-3535. PubMed ID: 38814769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]