These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 35511363)
1. Physiological and transcriptomic response of Medicago truncatula to colonization by high- or low-benefit arbuscular mycorrhizal fungi. Cope KR; Kafle A; Yakha JK; Pfeffer PE; Strahan GD; Garcia K; Subramanian S; Bücking H Mycorrhiza; 2022 Jul; 32(3-4):281-303. PubMed ID: 35511363 [TBL] [Abstract][Full Text] [Related]
2. The function of the Medicago truncatula ZIP transporter MtZIP14 is linked to arbuscular mycorrhizal fungal colonization. Watts-Williams SJ; Wege S; Ramesh SA; Berkowitz O; Xu B; Gilliham M; Whelan J; Tyerman SD Plant Cell Environ; 2023 May; 46(5):1691-1704. PubMed ID: 36654510 [TBL] [Abstract][Full Text] [Related]
3. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. Bonneau L; Huguet S; Wipf D; Pauly N; Truong HN New Phytol; 2013 Jul; 199(1):188-202. PubMed ID: 23506613 [TBL] [Abstract][Full Text] [Related]
4. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. Aloui A; Recorbet G; Lemaître-Guillier C; Mounier A; Balliau T; Zivy M; Wipf D; Dumas-Gaudot E Mycorrhiza; 2018 Jan; 28(1):1-16. PubMed ID: 28725961 [TBL] [Abstract][Full Text] [Related]
5. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. Abdallah C; Valot B; Guillier C; Mounier A; Balliau T; Zivy M; van Tuinen D; Renaut J; Wipf D; Dumas-Gaudot E; Recorbet G J Proteomics; 2014 Aug; 108():354-68. PubMed ID: 24925269 [TBL] [Abstract][Full Text] [Related]
6. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula. Kafle A; Garcia K; Wang X; Pfeffer PE; Strahan GD; Bücking H Plant Cell Environ; 2019 Jan; 42(1):270-284. PubMed ID: 29859016 [TBL] [Abstract][Full Text] [Related]
7. Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. Aloui A; Recorbet G; Robert F; Schoefs B; Bertrand M; Henry C; Gianinazzi-Pearson V; Dumas-Gaudot E; Aschi-Smiti S BMC Plant Biol; 2011 May; 11():75. PubMed ID: 21545723 [TBL] [Abstract][Full Text] [Related]
8. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis. Tsuzuki S; Handa Y; Takeda N; Kawaguchi M Mol Plant Microbe Interact; 2016 Apr; 29(4):277-86. PubMed ID: 26757243 [TBL] [Abstract][Full Text] [Related]
9. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphate efficiency. Wang X; Zhao S; Bücking H Ann Bot; 2016 Jul; 118(1):11-21. PubMed ID: 27208734 [TBL] [Abstract][Full Text] [Related]
10. Effect of short-term aluminum stress and mycorrhizal inoculation on nitric oxide metabolism in Medicago truncatula roots. Sujkowska-Rybkowska M; Czarnocka W; Sańko-Sawczenko I; Witoń D J Plant Physiol; 2018 Jan; 220():145-154. PubMed ID: 29179082 [TBL] [Abstract][Full Text] [Related]
11. A snapshot of the transcriptome of Medicago truncatula (Fabales: Fabaceae) shoots and roots in response to an arbuscular mycorrhizal fungus and the pea aphid (Acyrthosiphon pisum) (Hemiptera: Aphididae). Gomez SK; Maurya AK; Irvin L; Kelly MP; Schoenherr AP; Huguet-Tapia JC; Bombarely A Environ Entomol; 2023 Aug; 52(4):667-680. PubMed ID: 37467039 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Li M; Wang R; Tian H; Gao Y Mycorrhiza; 2018 Nov; 28(8):747-759. PubMed ID: 30251133 [TBL] [Abstract][Full Text] [Related]
13. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. Watts-Williams SJ; Jakobsen I; Cavagnaro TR; Grønlund M J Exp Bot; 2015 Jul; 66(13):4061-73. PubMed ID: 25944927 [TBL] [Abstract][Full Text] [Related]
14. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. Fellbaum CR; Mensah JA; Cloos AJ; Strahan GE; Pfeffer PE; Kiers ET; Bücking H New Phytol; 2014 Jul; 203(2):646-656. PubMed ID: 24787049 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Pérez-Tienda J; Corrêa A; Azcón-Aguilar C; Ferrol N Plant Physiol Biochem; 2014 Feb; 75():1-8. PubMed ID: 24361504 [TBL] [Abstract][Full Text] [Related]
16. Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L. Hu Y; Wu S; Sun Y; Li T; Zhang X; Chen C; Lin G; Chen B Mycorrhiza; 2015 Feb; 25(2):131-42. PubMed ID: 25033924 [TBL] [Abstract][Full Text] [Related]
17. In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. Silvestri A; Fiorilli V; Miozzi L; Accotto GP; Turina M; Lanfranco L BMC Genomics; 2019 Mar; 20(1):169. PubMed ID: 30832582 [TBL] [Abstract][Full Text] [Related]
18. Mycorrhiza-mediated potassium transport in Medicago truncatula can be evaluated by using rubidium as a proxy. Kafle A; Cooney DR; Shah G; Garcia K Plant Sci; 2022 Sep; 322():111364. PubMed ID: 35760157 [TBL] [Abstract][Full Text] [Related]
19. The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 increases the phosphorus uptake and biomass of Medicago truncatula, a benzo[a]pyrene-tolerant plant species. Calonne-Salmon M; Plouznikoff K; Declerck S Mycorrhiza; 2018 Nov; 28(8):761-771. PubMed ID: 30121903 [TBL] [Abstract][Full Text] [Related]
20. Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. Fernández I; Cosme M; Stringlis IA; Yu K; de Jonge R; van Wees SM; Pozo MJ; Pieterse CMJ; van der Heijden MGA New Phytol; 2019 Jul; 223(2):867-881. PubMed ID: 30883790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]