These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35512103)

  • 1. ATP synthesis in an ancient ATP synthase at low driving forces.
    Litty D; Müller V
    Proc Natl Acad Sci U S A; 2022 May; 119(19):e2201921119. PubMed ID: 35512103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions.
    Müller V; Lemker T; Lingl A; Weidner C; Coskun U; Grüber G
    J Mol Microbiol Biotechnol; 2005; 10(2-4):167-80. PubMed ID: 16645313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Na
    Litty D; Müller V
    FEBS J; 2020 Jul; 287(14):3012-3023. PubMed ID: 31876375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Animal plasma membrane energization by chemiosmotic H+ V-ATPases.
    Harvey WR; Wieczorek H
    J Exp Biol; 1997 Jan; 200(Pt 2):203-16. PubMed ID: 9050228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine.
    Fillingame RH
    J Exp Biol; 1997 Jan; 200(Pt 2):217-24. PubMed ID: 9050229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na+ transport by the A1AO-ATP synthase purified from Thermococcus onnurineus and reconstituted into liposomes.
    Mayer F; Lim JK; Langer JD; Kang SG; Müller V
    J Biol Chem; 2015 Mar; 290(11):6994-7002. PubMed ID: 25593316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The a subunit of the A1AO ATP synthase of Methanosarcina mazei Gö1 contains two conserved arginine residues that are crucial for ATP synthesis.
    Gloger C; Born AK; Antosch M; Müller V
    Biochim Biophys Acta; 2015; 1847(6-7):505-13. PubMed ID: 25724672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional production of an archaeal ATP synthase with a V-type c subunit in Escherichia coli.
    Westphal L; Litty D; Müller V
    Biochim Biophys Acta Bioenerg; 2021 Apr; 1862(4):148378. PubMed ID: 33460587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioenergetics of archaea: ancient energy conserving mechanisms developed in the early history of life.
    Lewalter K; Müller V
    Biochim Biophys Acta; 2006; 1757(5-6):437-45. PubMed ID: 16806054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations.
    Hicks DB; Liu J; Fujisawa M; Krulwich TA
    Biochim Biophys Acta; 2010 Aug; 1797(8):1362-77. PubMed ID: 20193659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of proton transport coupled ATP synthesis.
    Turina P; Petersen J; Gräber P
    Biochim Biophys Acta; 2016 Jun; 1857(6):653-64. PubMed ID: 26940516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essentials for ATP synthesis by F1F0 ATP synthases.
    von Ballmoos C; Wiedenmann A; Dimroth P
    Annu Rev Biochem; 2009; 78():649-72. PubMed ID: 19489730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and molecular characterization of a Na+-translocating F1Fo-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum.
    Ferguson SA; Keis S; Cook GM
    J Bacteriol; 2006 Jul; 188(14):5045-54. PubMed ID: 16816177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP synthases from archaea: the beauty of a molecular motor.
    Grüber G; Manimekalai MS; Mayer F; Müller V
    Biochim Biophys Acta; 2014 Jun; 1837(6):940-52. PubMed ID: 24650628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences.
    Zubareva VM; Lapashina AS; Shugaeva TE; Litvin AV; Feniouk BA
    Biochemistry (Mosc); 2020 Dec; 85(12):1613-1630. PubMed ID: 33705299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crucial role of the membrane potential for ATP synthesis by F(1)F(o) ATP synthases.
    Dimroth P; Kaim G; Matthey U
    J Exp Biol; 2000 Jan; 203(Pt 1):51-9. PubMed ID: 10600673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulatory subunit ε in Escherichia coli F
    Sielaff H; Duncan TM; Börsch M
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):775-788. PubMed ID: 29932911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and reconstitution into proteoliposomes of the F1F0 ATP synthase from the obligately anaerobic gram-positive bacterium Clostridium thermoautotrophicum.
    Das A; Ivey DM; Ljungdahl LG
    J Bacteriol; 1997 Mar; 179(5):1714-20. PubMed ID: 9045833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase.
    Diez M; Zimmermann B; Börsch M; König M; Schweinberger E; Steigmiller S; Reuter R; Felekyan S; Kudryavtsev V; Seidel CA; Gräber P
    Nat Struct Mol Biol; 2004 Feb; 11(2):135-41. PubMed ID: 14730350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.