These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35512700)

  • 41. Contributions of cis- and trans-Regulatory Evolution to Transcriptomic Divergence across Populations in the Drosophila mojavensis Larval Brain.
    Benowitz KM; Coleman JM; Allan CW; Matzkin LM
    Genome Biol Evol; 2020 Aug; 12(8):1407-1418. PubMed ID: 32653899
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Myocyte-specific enhancer factor 2 acts cooperatively with a muscle activator region to regulate Drosophila tropomyosin gene muscle expression.
    Lin MH; Nguyen HT; Dybala C; Storti RV
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4623-8. PubMed ID: 8643453
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Drosophila trithorax gene encodes a chromosomal protein and directly regulates the region-specific homeotic gene fork head.
    Kuzin B; Tillib S; Sedkov Y; Mizrokhi L; Mazo A
    Genes Dev; 1994 Oct; 8(20):2478-90. PubMed ID: 7958911
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A transcriptomics-based analysis of toxicity mechanisms of zebrafish embryos and larvae following parental Bisphenol A exposure.
    Huang W; Zheng S; Wang X; Cai Z; Xiao J; Liu C; Wu K
    Ecotoxicol Environ Saf; 2020 Dec; 205():111165. PubMed ID: 32836160
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The homeodomain transcription factor Orthopedia is involved in development of the Drosophila hindgut.
    Hildebrandt K; Bach N; Kolb D; Walldorf U
    Hereditas; 2020 Nov; 157(1):46. PubMed ID: 33213520
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biochemical Fractionation of Time-Resolved Drosophila Embryos Reveals Similar Transcriptomic Alterations in Replication Checkpoint and Histone mRNA Processing Mutants.
    Lefebvre FA; Benoit Bouvrette LP; Bergalet J; Lécuyer E
    J Mol Biol; 2017 Oct; 429(21):3264-3279. PubMed ID: 28167048
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Atlantic Bonito (Sarda sarda, Bloch 1793) transcriptome and detection of differential expression during larvae development.
    Sarropoulou E; Moghadam HK; Papandroulakis N; De la Gándara F; Ortega Garcia A; Makridis P
    PLoS One; 2014; 9(2):e87744. PubMed ID: 24503907
    [TBL] [Abstract][Full Text] [Related]  

  • 48. cis-Regulatory networks during development: a view of Drosophila.
    Bonn S; Furlong EE
    Curr Opin Genet Dev; 2008 Dec; 18(6):513-20. PubMed ID: 18929653
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative Single-Embryo Profile of Drosophila Genome Activation and the Dorsal-Ventral Patterning Network.
    Sandler JE; Stathopoulos A
    Genetics; 2016 Apr; 202(4):1575-84. PubMed ID: 26896327
    [TBL] [Abstract][Full Text] [Related]  

  • 50. STEEL enables high-resolution delineation of spatiotemporal transcriptomic data.
    Chen Y; Zhou S; Li M; Zhao F; Qi J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36857617
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation.
    Gluck C; Min S; Oyelakin A; Smalley K; Sinha S; Romano RA
    BMC Genomics; 2016 Nov; 17(1):923. PubMed ID: 27852218
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A gene expression atlas of embryonic neurogenesis in
    McCorkindale AL; Wahle P; Werner S; Jungreis I; Menzel P; Shukla CJ; Abreu RLP; Irizarry RA; Meyer IM; Kellis M; Zinzen RP
    Development; 2019 Mar; 146(6):. PubMed ID: 30923056
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inferring spatial and signaling relationships between cells from single cell transcriptomic data.
    Cang Z; Nie Q
    Nat Commun; 2020 Apr; 11(1):2084. PubMed ID: 32350282
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Developmental Progression in the Coral Acropora digitifera Is Controlled by Differential Expression of Distinct Regulatory Gene Networks.
    Reyes-Bermudez A; Villar-Briones A; Ramirez-Portilla C; Hidaka M; Mikheyev AS
    Genome Biol Evol; 2016 Mar; 8(3):851-70. PubMed ID: 26941230
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulatory encoding of quantitative variation in spatial activity of a
    Le Poul Y; Xin Y; Ling L; Mühling B; Jaenichen R; Hörl D; Bunk D; Harz H; Leonhardt H; Wang Y; Osipova E; Museridze M; Dharmadhikari D; Murphy E; Rohs R; Preibisch S; Prud'homme B; Gompel N
    Sci Adv; 2020 Dec; 6(49):. PubMed ID: 33268361
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Challenges for modeling global gene regulatory networks during development: insights from Drosophila.
    Wilczynski B; Furlong EE
    Dev Biol; 2010 Apr; 340(2):161-9. PubMed ID: 19874814
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Distalless-responsive enhancer of the Hox gene Sex combs reduced is required for segment- and sex-specific sensory organ development in Drosophila.
    Eksi SE; Barmina O; McCallough CL; Kopp A; Orenic TV
    PLoS Genet; 2018 Apr; 14(4):e1007320. PubMed ID: 29634724
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep transcriptomic study reveals the role of cell wall biosynthesis and organization networks in the developing shell of peanut pod.
    Gupta K; Gupta S; Faigenboim-Doron A; Patil AS; Levy Y; Carrus SC; Hovav R
    BMC Plant Biol; 2021 Nov; 21(1):509. PubMed ID: 34732143
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular and cellular organization of the taste system in the Drosophila larva.
    Kwon JY; Dahanukar A; Weiss LA; Carlson JR
    J Neurosci; 2011 Oct; 31(43):15300-9. PubMed ID: 22031876
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcriptomic basis and evolution of the ant nurse-larval social interactome.
    Warner MR; Mikheyev AS; Linksvayer TA
    PLoS Genet; 2019 May; 15(5):e1008156. PubMed ID: 31107868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.