These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35512818)

  • 1. Colloidal Systems in Concentrated Electrolyte Solutions Exhibit Re-entrant Long-Range Electrostatic Interactions due to Underscreening.
    Yuan H; Deng W; Zhu X; Liu G; Craig VSJ
    Langmuir; 2022 May; 38(19):6164-6173. PubMed ID: 35512818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Underscreening in concentrated electrolytes: re-entrant swelling in polyelectrolyte brushes.
    Robertson H; Elliott GR; Nelson ARJ; Le Brun AP; Webber GB; Prescott SW; Craig VSJ; Wanless EJ; Willott JD
    Phys Chem Chem Phys; 2023 Sep; 25(36):24770-24782. PubMed ID: 37671535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re-entrant swelling and redissolution of polyelectrolytes arises from an increased electrostatic decay length at high salt concentrations.
    Liu G; Parsons D; Craig VSJ
    J Colloid Interface Sci; 2020 Nov; 579():369-378. PubMed ID: 32615480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and anomalous underscreening in ethylammonium nitrate solutions confined between two mica surfaces.
    Fung YKC; Perkin S
    Faraday Discuss; 2023 Oct; 246(0):370-386. PubMed ID: 37458200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of anomalous underscreening in highly concentrated aqueous electrolytes confined between smooth silica surfaces.
    Kumar S; Cats P; Alotaibi MB; Ayirala SC; Yousef AA; van Roij R; Siretanu I; Mugele F
    J Colloid Interface Sci; 2022 Sep; 622():819-827. PubMed ID: 35561602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanolubrication in deep eutectic solvents.
    Hallett JE; Hayler HJ; Perkin S
    Phys Chem Chem Phys; 2020 Sep; 22(36):20253-20264. PubMed ID: 32966447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Underscreening and hidden ion structures in large scale simulations of concentrated electrolytes.
    Krucker-Velasquez E; Swan JW
    J Chem Phys; 2021 Oct; 155(13):134903. PubMed ID: 34624965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A screening of results on the decay length in concentrated electrolytes.
    Jäger H; Schlaich A; Yang J; Lian C; Kondrat S; Holm C
    Faraday Discuss; 2023 Oct; 246(0):520-539. PubMed ID: 37602784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-range electrostatic screening in ionic liquids.
    Gebbie MA; Dobbs HA; Valtiner M; Israelachvili JN
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7432-7. PubMed ID: 26040001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.
    Smith AM; Lee AA; Perkin S
    J Phys Chem Lett; 2016 Jun; 7(12):2157-63. PubMed ID: 27216986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous Underscreening in the Restricted Primitive Model.
    Härtel A; Bültmann M; Coupette F
    Phys Rev Lett; 2023 Mar; 130(10):108202. PubMed ID: 36962045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reexpansion of charged nanoparticle assemblies in concentrated electrolytes.
    Reinertsen RJE; Kewalramani S; Jiménez-Ángeles F; Weigand SJ; Bedzyk MJ; Olvera de la Cruz M
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2316537121. PubMed ID: 38289958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic screening in bulk and under confinement.
    Zeman J; Kondrat S; Holm C
    J Chem Phys; 2021 Nov; 155(20):204501. PubMed ID: 34852490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic liquids behave as dilute electrolyte solutions.
    Gebbie MA; Valtiner M; Banquy X; Fox ET; Henderson WA; Israelachvili JN
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9674-9. PubMed ID: 23716690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underscreening in ionic liquids: a first principles analysis.
    Rotenberg B; Bernard O; Hansen JP
    J Phys Condens Matter; 2018 Feb; 30(5):054005. PubMed ID: 29271363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long range electrostatic forces in ionic liquids.
    Gebbie MA; Smith AM; Dobbs HA; Lee AA; Warr GG; Banquy X; Valtiner M; Rutland MW; Israelachvili JN; Perkin S; Atkin R
    Chem Commun (Camb); 2017 Jan; 53(7):1214-1224. PubMed ID: 28000809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overscreening and Underscreening in Solid-Electrolyte Grain Boundary Space-Charge Layers.
    Dean JM; Coles SW; Saunders WR; McCluskey AR; Wolf MJ; Walker AB; Morgan BJ
    Phys Rev Lett; 2021 Sep; 127(13):135502. PubMed ID: 34623837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of interfacial ion structuring on range and magnitude of electric double layer, hydration, and adhesive interactions between mica surfaces in 0.05-3 M Li⁺ and Cs⁺ electrolyte solutions.
    Baimpos T; Shrestha BR; Raman S; Valtiner M
    Langmuir; 2014 Apr; 30(15):4322-32. PubMed ID: 24655312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cluster Formation Induced by Local Dielectric Saturation in Restricted Primitive Model Electrolytes.
    Ribar D; Woodward CE; Nordholm S; Forsman J
    J Phys Chem Lett; 2024 Aug; 15(32):8326-8333. PubMed ID: 39109581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large counterions boost the solubility and renormalized charge of suspended nanoparticles.
    Guerrero-García GI; González-Mozuelos P; Olvera de la Cruz M
    ACS Nano; 2013 Nov; 7(11):9714-23. PubMed ID: 24180597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.