These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35513137)

  • 1. Investigation of the optimal time interval between task-irrelevant auditory probes for evaluating mental workload in the shortest possible time.
    Sugimoto F; Kimura M; Takeda Y
    Int J Psychophysiol; 2022 Jul; 177():103-110. PubMed ID: 35513137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The auditory N1 amplitude for task-irrelevant probes reflects visual interest.
    Takeda Y; Kimura M
    Int J Psychophysiol; 2014 Oct; 94(1):35-41. PubMed ID: 25058330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of mental workload with task-irrelevant auditory probes.
    Kramer AF; Trejo LJ; Humphrey D
    Biol Psychol; 1995 May; 40(1-2):83-100. PubMed ID: 7647188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The efficacy of auditory probes in indexing cognitive workload is dependent on stimulus complexity.
    Dyke FB; Leiker AM; Grand KF; Godwin MM; Thompson AG; Rietschel JC; McDonald CG; Miller MW
    Int J Psychophysiol; 2015 Jan; 95(1):56-62. PubMed ID: 25528402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulus-to-matching-stimulus interval influences N1, P2, and P3b in an equiprobable Go/NoGo task.
    Steiner GZ; Barry RJ; Gonsalvez CJ
    Int J Psychophysiol; 2014 Oct; 94(1):59-68. PubMed ID: 25034341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological assessment of driving pleasure and difficulty using a task-irrelevant probe technique.
    Takeda Y; Inoue K; Kimura M; Sato T; Nagai C
    Biol Psychol; 2016 Oct; 120():137-141. PubMed ID: 27693475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory probe sensitivity to mental workload changes - an event-related potential study.
    Ullsperger P; Freude G; Erdmann U
    Int J Psychophysiol; 2001 Apr; 40(3):201-9. PubMed ID: 11228347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in evoked potentials during the active processing of sound location and motion.
    Richter N; Schröger E; Rübsamen R
    Neuropsychologia; 2013 Jun; 51(7):1204-14. PubMed ID: 23499852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferred EEG brain states at stimulus onset in a fixed interstimulus interval equiprobable auditory Go/NoGo task: a definitive study.
    Barry RJ; De Blasio FM; De Pascalis V; Karamacoska D
    Int J Psychophysiol; 2014 Oct; 94(1):42-58. PubMed ID: 25043955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-irrelevant Auditory Event-related Potentials as Mental Workload Indicators: A Between-task Comparison Study
    Xu J; Ke Y; Liu S; Song X; Xu C; Zhou G; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3216-3219. PubMed ID: 33018689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attention-dependent sound offset-related brain potentials.
    Horváth J
    Psychophysiology; 2016 May; 53(5):663-77. PubMed ID: 26757414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus complexity effects on the event-related potentials to task-irrelevant stimuli.
    Barkaszi I; Czigler I; Balázs L
    Biol Psychol; 2013 Sep; 94(1):82-9. PubMed ID: 23702457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attentional modulation in the detection of irrelevant deviance: a simultaneous ERP/fMRI study.
    Sabri M; Liebenthal E; Waldron EJ; Medler DA; Binder JR
    J Cogn Neurosci; 2006 May; 18(5):689-700. PubMed ID: 16768370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulus sequence affects schizophrenia-normal differences in event processing during an auditory oddball task.
    Gilmore CS; Clementz BA; Buckley PF
    Brain Res Cogn Brain Res; 2005 Jul; 24(2):215-27. PubMed ID: 15993760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mental workload classification based on ignored auditory probes and spatial covariance.
    Tang S; Liu C; Zhang Q; Gu H; Li X; Li Z
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34280906
    [No Abstract]   [Full Text] [Related]  

  • 16. The modulation of auditory novelty processing by working memory load in school age children and adults: a combined behavioral and event-related potential study.
    Ruhnau P; Wetzel N; Widmann A; Schröger E
    BMC Neurosci; 2010 Oct; 11():126. PubMed ID: 20929535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of inter-stimulus interval (ISI) duration on the N1 and P2 components of the auditory event-related potential.
    Pereira DR; Cardoso S; Ferreira-Santos F; Fernandes C; Cunha-Reis C; Paiva TO; Almeida PR; Silveira C; Barbosa F; Marques-Teixeira J
    Int J Psychophysiol; 2014 Dec; 94(3):311-8. PubMed ID: 25304172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach to the physiological measurement of mental workload.
    Miller MW; Rietschel JC; McDonald CG; Hatfield BD
    Int J Psychophysiol; 2011 Apr; 80(1):75-8. PubMed ID: 21320552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N1-P2: Neural markers of temporal expectation and response discrimination in interval timing.
    Duzcu H; Özkurt TE; Mapelli I; Hohenberger A
    Acta Neurobiol Exp (Wars); 2019; 79(2):193-204. PubMed ID: 31342955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow fluctuations in attentional control of sensory cortex.
    Kam JW; Dao E; Farley J; Fitzpatrick K; Smallwood J; Schooler JW; Handy TC
    J Cogn Neurosci; 2011 Feb; 23(2):460-70. PubMed ID: 20146593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.