These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35513171)

  • 1. ERP-WGAN: A data augmentation method for EEG single-trial detection.
    Zhang R; Zeng Y; Tong L; Shu J; Lu R; Yang K; Li Z; Yan B
    J Neurosci Methods; 2022 Jul; 376():109621. PubMed ID: 35513171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Approach for EEG Denoising Based on Wasserstein Generative Adversarial Network.
    Dong Y; Tang X; Li Q; Wang Y; Jiang N; Tian L; Zheng Y; Li X; Zhao S; Li G; Fang P
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3524-3534. PubMed ID: 37643110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroencephalographic Signal Data Augmentation Based on Improved Generative Adversarial Network.
    Du X; Wang X; Zhu L; Ding X; Lv Y; Qiu S; Liu Q
    Brain Sci; 2024 Apr; 14(4):. PubMed ID: 38672017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative AI with WGAN-GP for boosting seizure detection accuracy.
    Abou-Abbas L; Henni K; Jemal I; Mezghani N
    Front Artif Intell; 2024; 7():1437315. PubMed ID: 39415942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emotion Recognition Based on EEG Using Generative Adversarial Nets and Convolutional Neural Network.
    Pan B; Zheng W
    Comput Math Methods Med; 2021; 2021():2520394. PubMed ID: 34671415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving classification performance of motor imagery BCI through EEG data augmentation with conditional generative adversarial networks.
    Choo S; Park H; Jung JY; Flores K; Nam CS
    Neural Netw; 2024 Dec; 180():106665. PubMed ID: 39241437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fNIRS-GANs: data augmentation using generative adversarial networks for classifying motor tasks from functional near-infrared spectroscopy.
    Nagasawa T; Sato T; Nambu I; Wada Y
    J Neural Eng; 2020 Feb; 17(1):016068. PubMed ID: 31945755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generative Adversarial Networks-Based Data Augmentation for Brain-Computer Interface.
    Fahimi F; Dosen S; Ang KK; Mrachacz-Kersting N; Guan C
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4039-4051. PubMed ID: 32841127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling EEG Data Distribution With a Wasserstein Generative Adversarial Network to Predict RSVP Events.
    Panwar S; Rad P; Jung TP; Huang Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Aug; 28(8):1720-1730. PubMed ID: 32746311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Cross-State and Cross-Subject Visual ERP-Based BCI With Temporal Modeling and Adversarial Training.
    Ni Z; Xu J; Wu Y; Li M; Xu G; Xu B
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():369-379. PubMed ID: 35133966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG Signal Reconstruction Using a Generative Adversarial Network With Wasserstein Distance and Temporal-Spatial-Frequency Loss.
    Luo TJ; Fan Y; Chen L; Guo G; Zhou C
    Front Neuroinform; 2020; 14():15. PubMed ID: 32425763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BWGAN-GP: An EEG Data Generation Method for Class Imbalance Problem in RSVP Tasks.
    Xu M; Chen Y; Wang Y; Wang D; Liu Z; Zhang L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():251-263. PubMed ID: 35073267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Data Augmentation Method for Motor Imagery EEG Signals Based on DCGAN-GP Network.
    Du X; Ding X; Xi M; Lv Y; Qiu S; Liu Q
    Brain Sci; 2024 Apr; 14(4):. PubMed ID: 38672024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks.
    Bao G; Yan B; Tong L; Shu J; Wang L; Yang K; Zeng Y
    Front Comput Neurosci; 2021; 15():723843. PubMed ID: 34955797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new imbalanced data oversampling method based on Bootstrap method and Wasserstein Generative Adversarial Network.
    Hou B; Chen G
    Math Biosci Eng; 2024 Feb; 21(3):4309-4327. PubMed ID: 38549329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data augmentation for invasive brain-computer interfaces based on stereo-electroencephalography (SEEG).
    Wu X; Zhang D; Li G; Gao X; Metcalfe B; Chen L
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38237174
    [No Abstract]   [Full Text] [Related]  

  • 18. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer diagnosis using generative adversarial networks based on deep learning from imbalanced data.
    Xiao Y; Wu J; Lin Z
    Comput Biol Med; 2021 Aug; 135():104540. PubMed ID: 34153791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rectified Wasserstein Generative Adversarial Networks for Perceptual Image Restoration.
    Ma H; Liu D; Wu F
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3648-3663. PubMed ID: 35731773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.