BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35513222)

  • 1. Identification of novel indole derivatives as highly potent AMPK activators with anti-diabetic profiles.
    Tamura Y; Morita I; Hinata Y; Kojima E; Ozasa H; Ikemoto H; Asano M; Wada T; Hayasaki-Kajiwara Y; Iwasaki T; Matsumura K
    Bioorg Med Chem Lett; 2022 Jul; 68():128769. PubMed ID: 35513222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of novel benzimidazole derivatives as highly potent AMPK activators with anti-diabetic profiles.
    Tamura Y; Morita I; Hinata Y; Kojima E; Sasaki Y; Wada T; Asano M; Fujioka M; Hayasaki-Kajiwara Y; Iwasaki T; Matsumura K
    Bioorg Med Chem Lett; 2023 Jan; 79():129059. PubMed ID: 36402454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle.
    Bultot L; Jensen TE; Lai YC; Madsen AL; Collodet C; Kviklyte S; Deak M; Yavari A; Foretz M; Ghaffari S; Bellahcene M; Ashrafian H; Rider MH; Richter EA; Sakamoto K
    Am J Physiol Endocrinol Metab; 2016 Oct; 311(4):E706-E719. PubMed ID: 27577855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice.
    Cokorinos EC; Delmore J; Reyes AR; Albuquerque B; Kjøbsted R; Jørgensen NO; Tran JL; Jatkar A; Cialdea K; Esquejo RM; Meissen J; Calabrese MF; Cordes J; Moccia R; Tess D; Salatto CT; Coskran TM; Opsahl AC; Flynn D; Blatnik M; Li W; Kindt E; Foretz M; Viollet B; Ward J; Kurumbail RG; Kalgutkar AS; Wojtaszewski JFP; Cameron KO; Miller RA
    Cell Metab; 2017 May; 25(5):1147-1159.e10. PubMed ID: 28467931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators.
    Lai YC; Kviklyte S; Vertommen D; Lantier L; Foretz M; Viollet B; Hallén S; Rider MH
    Biochem J; 2014 Jun; 460(3):363-75. PubMed ID: 24665903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase.
    Hegarty BD; Turner N; Cooney GJ; Kraegen EW
    Acta Physiol (Oxf); 2009 May; 196(1):129-45. PubMed ID: 19245658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function analysis of the AMPK activator SC4 and identification of a potent pan AMPK activator.
    Ovens AJ; Gee YS; Ling NXY; Yu D; Hardee JP; Chung JD; Ngoei KRW; Waters NJ; Hoffman NJ; Scott JW; Loh K; Spengler K; Heller R; Parker MW; Lynch GS; Huang F; Galic S; Kemp BE; Baell JB; Oakhill JS; Langendorf CG
    Biochem J; 2022 Jun; 479(11):1181-1204. PubMed ID: 35552369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Astragalus polysaccharides alleviates glucose toxicity and restores glucose homeostasis in diabetic states via activation of AMPK.
    Zou F; Mao XQ; Wang N; Liu J; Ou-Yang JP
    Acta Pharmacol Sin; 2009 Dec; 30(12):1607-15. PubMed ID: 19960007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xanthene derivatives increase glucose utilization through activation of LKB1-dependent AMP-activated protein kinase.
    Kwon Y; Song P; Yoon JH; Ghim J; Kim D; Kang B; Lee TG; Kim JA; Choi JK; Youn IK; Lee HK; Ryu SH
    PLoS One; 2014; 9(9):e108771. PubMed ID: 25250787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of basal and glucagon-induced hepatic glucose production by 991 and other pharmacological AMPK activators.
    Johanns M; Corbet C; Jacobs R; Drappier M; Bommer GT; Herinckx G; Vertommen D; Tajeddine N; Young D; Messens J; Feron O; Steinberg GR; Hue L; Rider MH
    Biochem J; 2022 Jun; 479(12):1317-1336. PubMed ID: 35670459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Determinants for Small-Molecule Activation of Skeletal Muscle AMPK α2β2γ1 by the Glucose Importagog SC4.
    Ngoei KRW; Langendorf CG; Ling NXY; Hoque A; Varghese S; Camerino MA; Walker SR; Bozikis YE; Dite TA; Ovens AJ; Smiles WJ; Jacobs R; Huang H; Parker MW; Scott JW; Rider MH; Foitzik RC; Kemp BE; Baell JB; Oakhill JS
    Cell Chem Biol; 2018 Jun; 25(6):728-737.e9. PubMed ID: 29657085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23) Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle.
    Shimoda Y; Matsuo K; Kitamura Y; Ono K; Ueyama T; Matoba S; Yamada H; Wu T; Chen J; Emoto N; Ikeda K
    PLoS One; 2015; 10(9):e0138624. PubMed ID: 26398569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and translation of a target engagement marker for AMP-activated protein kinase (AMPK).
    Grempler R; Wolff M; Simon E; Schmid R; Eisele C; Rieber K; Fischer E; Mettel S; Gabrielyan O; Delic D; Luippold G; Redeman N
    PLoS One; 2018; 13(5):e0197849. PubMed ID: 29799853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acyl Glucuronide Metabolites of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1 H-indole-3-carboxylic Acid (PF-06409577) and Related Indole-3-carboxylic Acid Derivatives are Direct Activators of Adenosine Monophosphate-Activated Protein Kinase (AMPK).
    Ryder TF; Calabrese MF; Walker GS; Cameron KO; Reyes AR; Borzilleri KA; Delmore J; Miller R; Kurumbail RG; Ward J; Kung DW; Brown JA; Edmonds DJ; Eng H; Wolford AC; Kalgutkar AS
    J Med Chem; 2018 Aug; 61(16):7273-7288. PubMed ID: 30036059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice.
    Li YY; Yu LF; Zhang LN; Qiu BY; Su MB; Wu F; Chen DK; Pang T; Gu M; Zhang W; Ma WP; Jiang HW; Li JY; Nan FJ; Li J
    Toxicol Appl Pharmacol; 2013 Dec; 273(2):325-34. PubMed ID: 24055643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low molecular weight fucoidan improves endoplasmic reticulum stress-reduced insulin sensitivity through AMP-activated protein kinase activation in L6 myotubes and restores lipid homeostasis in a mouse model of type 2 diabetes.
    Jeong YT; Kim YD; Jung YM; Park DC; Lee DS; Ku SK; Li X; Lu Y; Chao GH; Kim KJ; Lee JY; Baek MC; Kang W; Hwang SL; Chang HW
    Mol Pharmacol; 2013 Jul; 84(1):147-57. PubMed ID: 23658008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMPK in microvascular complications of diabetes and the beneficial effects of AMPK activators from plants.
    Shrikanth CB; Nandini CD
    Phytomedicine; 2020 Jul; 73():152808. PubMed ID: 30935723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the AMP-activated protein kinase for the treatment of type 2 diabetes.
    Musi N; Goodyear LJ
    Curr Drug Targets Immune Endocr Metabol Disord; 2002 Jul; 2(2):119-27. PubMed ID: 12476786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metformin promotes irisin release from murine skeletal muscle independently of AMP-activated protein kinase activation.
    Li DJ; Huang F; Lu WJ; Jiang GJ; Deng YP; Shen FM
    Acta Physiol (Oxf); 2015 Mar; 213(3):711-21. PubMed ID: 25382002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emodin regulates glucose utilization by activating AMP-activated protein kinase.
    Song P; Kim JH; Ghim J; Yoon JH; Lee A; Kwon Y; Hyun H; Moon HY; Choi HS; Berggren PO; Suh PG; Ryu SH
    J Biol Chem; 2013 Feb; 288(8):5732-42. PubMed ID: 23303186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.