These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35513403)

  • 1. Multisensory GPS impact on spatial representation in an immersive virtual reality driving game.
    Seminati L; Hadnett-Hunter J; Joiner R; Petrini K
    Sci Rep; 2022 May; 12(1):7401. PubMed ID: 35513403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A feature and conjunction visual search immersive virtual reality serious game for measuring spatial and distractor inhibition attention using response time and action kinematics.
    Ajana K; Everard G; Lejeune T; Edwards MG
    J Clin Exp Neuropsychol; 2023 May; 45(3):292-303. PubMed ID: 37260369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the global positioning system on the driving performance of people with mild Alzheimer's disease.
    Yi J; Lee HC; Parsons R; Falkmer T
    Gerontology; 2015; 61(1):79-88. PubMed ID: 25342271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual reactions to a multisensory immersive virtual environment: the impact of a wind farm on individuals.
    Ruotolo F; Senese VP; Ruggiero G; Maffei L; Masullo M; Iachini T
    Cogn Process; 2012 Aug; 13 Suppl 1():S319-23. PubMed ID: 22806673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An immersive virtual reality game to train spatial attention orientation after stroke: A feasibility study.
    Huygelier H; Schraepen B; Lafosse C; Vaes N; Schillebeeckx F; Michiels K; Note E; Vanden Abeele V; van Ee R; Gillebert CR
    Appl Neuropsychol Adult; 2022; 29(5):915-935. PubMed ID: 32945702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effects of Immersive Virtual Reality in Reducing Public Stigma of Mental Illness in the University Population of Hong Kong: Randomized Controlled Trial.
    Yuen ASY; Mak WWS
    J Med Internet Res; 2021 Jul; 23(7):e23683. PubMed ID: 34259636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of vision and proprioception in self-motion encoding: An immersive virtual reality study.
    Bayramova R; Valori I; McKenna-Plumley PE; Callegher CZ; Farroni T
    Atten Percept Psychophys; 2021 Oct; 83(7):2865-2878. PubMed ID: 34341941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective resetting position and heading estimations while driving in a large-scale immersive virtual environment.
    Zhang L; Mou W
    Exp Brain Res; 2019 Feb; 237(2):335-350. PubMed ID: 30406817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial Knowledge via Auditory Information for Blind Individuals: Spatial Cognition Studies and the Use of Audio-VR.
    Afonso-Jaco A; Katz BFG
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding Home: Landmark Ambiguity in Human Navigation.
    Jetzschke S; Ernst MO; Froehlich J; Boeddeker N
    Front Behav Neurosci; 2017; 11():132. PubMed ID: 28769773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keeping track of reality: embedding visual memory in natural behaviour.
    Martarelli CS; Chiquet S; Ertl M
    Memory; 2023 Nov; 31(10):1295-1305. PubMed ID: 37727126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An empirical study to investigate the efficacy of collaborative immersive virtual reality systems for designing information architecture of software systems.
    Narasimha S; Dixon E; Bertrand JW; Chalil Madathil K
    Appl Ergon; 2019 Oct; 80():175-186. PubMed ID: 31280803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task.
    Ranjbar Pouya O; Byagowi A; Kelly DM; Moussavi Z
    Q J Exp Psychol (Hove); 2017 Jul; 70(7):1406-1419. PubMed ID: 27156658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential interactions of age and sleep deprivation in driving and spatial perception by male drivers in a virtual reality environment.
    Rashid Izullah F; Af Schulten A; Koivisto M; Nieminen V; Luimula M; HÄmÄlÄinen H
    Scand J Psychol; 2021 Dec; 62(6):787-797. PubMed ID: 34148239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using virtual reality to assess dynamic self-motion and landmark cues for spatial updating in children and adults.
    Barhorst-Cates EM; Stoker J; Stefanucci JK; Creem-Regehr SH
    Mem Cognit; 2021 Apr; 49(3):572-585. PubMed ID: 33108632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent talking in immersive virtual reality: on the dominance of visual speech cues.
    Gonzalez-Franco M; Maselli A; Florencio D; Smolyanskiy N; Zhang Z
    Sci Rep; 2017 Jun; 7(1):3817. PubMed ID: 28630450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of visual landmark cues in spatial memory.
    Newman PM; McNamara TP
    Psychol Res; 2022 Jul; 86(5):1636-1654. PubMed ID: 34420070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The priming function of in-car audio instruction.
    Keyes H; Whitmore A; Naneva S; McDermott D
    Q J Exp Psychol (Hove); 2019 Mar; 72(3):643-650. PubMed ID: 29649945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual environments for the transfer of navigation skills in the blind: a comparison of directed instruction vs. video game based learning approaches.
    Connors EC; Chrastil ER; Sánchez J; Merabet LB
    Front Hum Neurosci; 2014; 8():223. PubMed ID: 24822044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.