BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35513429)

  • 21. A highly specific SpCas9 variant is identified by in vivo screening in yeast.
    Casini A; Olivieri M; Petris G; Montagna C; Reginato G; Maule G; Lorenzin F; Prandi D; Romanel A; Demichelis F; Inga A; Cereseto A
    Nat Biotechnol; 2018 Mar; 36(3):265-271. PubMed ID: 29431739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9.
    Choi GCG; Zhou P; Yuen CTL; Chan BKC; Xu F; Bao S; Chu HY; Thean D; Tan K; Wong KH; Zheng Z; Wong ASL
    Nat Methods; 2019 Aug; 16(8):722-730. PubMed ID: 31308554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4
    Xiao Q; Chen S; Wang Q; Liu Z; Liu S; Deng H; Hou W; Wu D; Xiong Y; Li J; Guo D
    Retrovirology; 2019 Jun; 16(1):15. PubMed ID: 31186067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cas-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cas9.
    Park J; Kim JS; Bae S
    Bioinformatics; 2016 Jul; 32(13):2017-23. PubMed ID: 27153724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.
    Zhou H; Zhou M; Li D; Manthey J; Lioutikova E; Wang H; Zeng X
    BMC Genomics; 2017 Nov; 18(Suppl 9):826. PubMed ID: 29219081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing.
    Replogle JM; Norman TM; Xu A; Hussmann JA; Chen J; Cogan JZ; Meer EJ; Terry JM; Riordan DP; Srinivas N; Fiddes IT; Arthur JG; Alvarado LJ; Pfeiffer KA; Mikkelsen TS; Weissman JS; Adamson B
    Nat Biotechnol; 2020 Aug; 38(8):954-961. PubMed ID: 32231336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal Structure of Staphylococcus aureus Cas9.
    Nishimasu H; Cong L; Yan WX; Ran FA; Zetsche B; Li Y; Kurabayashi A; Ishitani R; Zhang F; Nureki O
    Cell; 2015 Aug; 162(5):1113-26. PubMed ID: 26317473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multilayered VBC score predicts sgRNAs that efficiently generate loss-of-function alleles.
    Michlits G; Jude J; Hinterndorfer M; de Almeida M; Vainorius G; Hubmann M; Neumann T; Schleiffer A; Burkard TR; Fellner M; Gijsbertsen M; Traunbauer A; Zuber J; Elling U
    Nat Methods; 2020 Jul; 17(7):708-716. PubMed ID: 32514112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Mechanism of D1135E-Induced Discriminated CRISPR-Cas9 PAM Recognition.
    Kang M; Zuo Z; Yin Z; Gu J
    J Chem Inf Model; 2022 Jun; 62(12):3057-3066. PubMed ID: 35666156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Structure-based optimization and design of CRISPR protein xCas9].
    Xue D; Zhu H; Du W; Tang H; Huang Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1385-1395. PubMed ID: 33973451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of Vectors and Targeting Strategies Including GoldenBraid and Genome Editing Tools: GoldenBraid Assembly of Multiplex CRISPR /Cas12a Guide RNAs for Gene Editing in Nicotiana benthamiana.
    González B; Vazquez-Vilar M; Sánchez-Vicente J; Orzáez D
    Methods Mol Biol; 2022; 2480():193-214. PubMed ID: 35616865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A natural single-guide RNA repurposes Cas9 to autoregulate CRISPR-Cas expression.
    Workman RE; Pammi T; Nguyen BTK; Graeff LW; Smith E; Sebald SM; Stoltzfus MJ; Euler CW; Modell JW
    Cell; 2021 Feb; 184(3):675-688.e19. PubMed ID: 33421369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved Cas9 activity by specific modifications of the tracrRNA.
    Scott T; Urak R; Soemardy C; Morris KV
    Sci Rep; 2019 Nov; 9(1):16104. PubMed ID: 31695072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9.
    Feng Y; Chen C; Han Y; Chen Z; Lu X; Liang F; Li S; Qin W; Lin S
    G3 (Bethesda); 2016 Aug; 6(8):2517-21. PubMed ID: 27317783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes.
    Yeo WL; Heng E; Tan LL; Lim YW; Lim YH; Hoon S; Zhao H; Zhang MM; Wong FT
    Biotechnol Bioeng; 2019 Sep; 116(9):2330-2338. PubMed ID: 31090220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-scale CRISPR pooled screens.
    Sanjana NE
    Anal Biochem; 2017 Sep; 532():95-99. PubMed ID: 27261176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural insights into a high fidelity variant of SpCas9.
    Guo M; Ren K; Zhu Y; Tang Z; Wang Y; Zhang B; Huang Z
    Cell Res; 2019 Mar; 29(3):183-192. PubMed ID: 30664728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Live-Cell CRISPR Imaging in Plant Cells with a Telomere-Specific Guide RNA.
    Khosravi S; Dreissig S; Schindele P; Wolter F; Rutten T; Puchta H; Houben A
    Methods Mol Biol; 2020; 2166():343-356. PubMed ID: 32710419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing.
    Kelley ML; Strezoska Ž; He K; Vermeulen A; Smith Av
    J Biotechnol; 2016 Sep; 233():74-83. PubMed ID: 27374403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.