BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35513468)

  • 1. Topography inversion in scanning tunneling microscopy of single-atom-thick materials from penetrating substrate states.
    Park C; Yoon M
    Sci Rep; 2022 May; 12(1):7321. PubMed ID: 35513468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Dimensional Band Structure in Honeycomb Metal-Organic Frameworks.
    Kumar A; Banerjee K; Foster AS; Liljeroth P
    Nano Lett; 2018 Sep; 18(9):5596-5602. PubMed ID: 30134111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy.
    Jadidi MF; Kamber U; Gürlü O; Özer HÖ
    Beilstein J Nanotechnol; 2018; 9():2953-2959. PubMed ID: 30546992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Single-Atom-Thick TiO2 Nanomesh on an Insulating Oxide.
    Ohsawa T; Saito M; Hamada I; Shimizu R; Iwaya K; Shiraki S; Wang Z; Ikuhara Y; Hitosugi T
    ACS Nano; 2015 Sep; 9(9):8766-72. PubMed ID: 26291512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-Surface Synthesis of Variable Bandgap Nanoporous Graphene.
    Wang D; Lu X; Arramel ; Yang M; Wu J; Wee ATS
    Small; 2021 Oct; 17(42):e2102246. PubMed ID: 34535956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Scanning Tunneling Microscopy and Spectroscopy in the Studies of Colloidal Quantum Qots.
    Duan J; Wang J; Hou L; Ji P; Zhang W; Liu J; Zhu X; Sun Z; Ma Y; Ma L
    Chem Rec; 2023 Oct; 23(10):e202300120. PubMed ID: 37255365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of Single Crystalline 2D Materials beyond Graphene on Non-metallic Substrates.
    Gao W; Zhi G; Zhou M; Niu T
    Small; 2024 May; ():e2311317. PubMed ID: 38712469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between Switching Driven by the Tunneling Current and Atomic Force of a Bistable Four-Atom Si Quantum Dot.
    Yamazaki S; Maeda K; Sugimoto Y; Abe M; Zobač V; Pou P; Rodrigo L; Mutombo P; Pérez R; Jelínek P; Morita S
    Nano Lett; 2015 Jul; 15(7):4356-63. PubMed ID: 26027677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene.
    Qiu Z; Holwill M; Olsen T; Lyu P; Li J; Fang H; Yang H; Kashchenko M; Novoselov KS; Lu J
    Nat Commun; 2021 Jan; 12(1):70. PubMed ID: 33397960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Honeycomb Boron on Al(111): From the Concept of Borophene to the Two-Dimensional Boride.
    Preobrajenski AB; Lyalin A; Taketsugu T; Vinogradov NA; Vinogradov AS
    ACS Nano; 2021 Sep; 15(9):15153-15165. PubMed ID: 34460239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductance Quantization in 2D Semi-Metallic Transition Metal Dichalcogenides.
    Lu Z; Hou S; Lin R; Shi J; Wu Q; Lin L; Shi J; Yang Y; Lambert C; Hong W
    Small; 2024 Apr; ():e2311491. PubMed ID: 38682729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomically resolved STM imaging with a diamond tip: simulation and experiment.
    Grushko V; Lübben O; Chaika AN; Novikov N; Mitskevich E; Chepugov A; Lysenko O; Murphy BE; Krasnikov SA; Shvets IV
    Nanotechnology; 2014 Jan; 25(2):025706. PubMed ID: 24334653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning tunneling microscopy simulations of nitrogen- and boron-doped graphene and single-walled carbon nanotubes.
    Zheng B; Hermet P; Henrard L
    ACS Nano; 2010 Jul; 4(7):4165-73. PubMed ID: 20552993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating the Use of Conductive Atomic Force Microscopy for Defect Quantification in 2D Materials.
    Xu K; Holbrook M; Holtzman LN; Pasupathy AN; Barmak K; Hone JC; Rosenberger MR
    ACS Nano; 2023 Dec; 17(24):24743-24752. PubMed ID: 38095969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Single-Molecule Chemical Reaction Studied by High-Resolution Atomic Force Microscopy and Scanning Tunneling Microscopy Induced Light Emission.
    Kaiser K; Gross L; Schulz F
    ACS Nano; 2019 Jun; 13(6):6947-6954. PubMed ID: 31184117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Control of Rewriteable Doping Patterns in Pristine Graphene/Boron Nitride Heterostructures.
    Velasco J; Ju L; Wong D; Kahn S; Lee J; Tsai HZ; Germany C; Wickenburg S; Lu J; Taniguchi T; Watanabe K; Zettl A; Wang F; Crommie MF
    Nano Lett; 2016 Mar; 16(3):1620-5. PubMed ID: 26852622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of Silicene Nanosheets on Graphite.
    De Crescenzi M; Berbezier I; Scarselli M; Castrucci P; Abbarchi M; Ronda A; Jardali F; Park J; Vach H
    ACS Nano; 2016 Dec; 10(12):11163-11171. PubMed ID: 28024331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying atomic geometry and electronic structure of (2 x 3)-Sr/Si(100) surface and its initial oxidation.
    Du W; Wang B; Xu L; Hu Z; Cui X; Pan BC; Yang J; Hou JG
    J Chem Phys; 2008 Oct; 129(16):164707. PubMed ID: 19045298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic resolution noncontact atomic force and scanning tunneling microscopy of TiO2(110)-(1 x 1) and - (1 x 2): simultaneous imaging of surface structures and electronic states.
    Ashino M; Sugawara Y; Morita S; Ishikawa M
    Phys Rev Lett; 2001 May; 86(19):4334-7. PubMed ID: 11328168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.