These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 35513555)

  • 1. Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy.
    Tavakkoli Yaraki M; Liu B; Tan YN
    Nanomicro Lett; 2022 May; 14(1):123. PubMed ID: 35513555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-enhancement study of dual functional photosensitizers with aggregation-induced emission and singlet oxygen generation.
    Tavakkoli Yaraki M; Hu F; Daqiqeh Rezaei S; Liu B; Tan YN
    Nanoscale Adv; 2020 Jul; 2(7):2859-2869. PubMed ID: 36132415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold Nanostars-AIE Theranostic Nanodots with Enhanced Fluorescence and Photosensitization Towards Effective Image-Guided Photodynamic Therapy.
    Tavakkoli Yaraki M; Wu M; Middha E; Wu W; Daqiqeh Rezaei S; Liu B; Tan YN
    Nanomicro Lett; 2021 Jan; 13(1):58. PubMed ID: 34138261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-functional nano-photosensitizers: Eosin-Y decorated gold nanorods for plasmon-enhanced fluorescence and singlet oxygen generation.
    Kaja S; Mathews AV; Nag A
    RSC Adv; 2024 Apr; 14(18):12417-12427. PubMed ID: 38633485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamentals and applications of metal nanoparticle- enhanced singlet oxygen generation for improved cancer photodynamic therapy.
    George BP; Chota A; Sarbadhikary P; Abrahamse H
    Front Chem; 2022; 10():964674. PubMed ID: 35936097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-Accelerated Generation of Singlet Oxygen on an Au/MoS
    Younis MR; An R; Wang Y; He G; Gurram B; Wang S; Lin J; Ye D; Huang P; Xia XH
    ACS Appl Bio Mater; 2022 Feb; 5(2):747-760. PubMed ID: 35040617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Highly Efficient and Photostable Photosensitizer with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Anticancer Therapy.
    Wu W; Mao D; Hu F; Xu S; Chen C; Zhang CJ; Cheng X; Yuan Y; Ding D; Kong D; Liu B
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28671732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-protected gold/silver alloy nanoclusters in metal-enhanced singlet oxygen generation and their correlation with photoluminescence.
    Yu Y; Lee WD; Tan YN
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110525. PubMed ID: 32228897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy.
    Li S; Shen X; Xu QH; Cao Y
    Nanoscale; 2019 Nov; 11(41):19551-19560. PubMed ID: 31578535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Efficient Near-Infrared Photosensitizers with Aggregation-Induced Emission Characteristics: Rational Molecular Design and Photodynamic Cancer Cell Ablation.
    Chen D; Long Z; Zhong C; Chen L; Dang Y; Hu JJ; Lou X; Xia F
    ACS Appl Bio Mater; 2021 Jun; 4(6):5231-5239. PubMed ID: 35007005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient, conjugated-polymer-based nano-photosensitizers for selectively targeted two-photon photodynamic therapy and imaging of cancer cells.
    Shen X; Li S; Li L; Yao SQ; Xu QH
    Chemistry; 2015 Jan; 21(5):2214-21. PubMed ID: 25469739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanodots with a controlled N structure by a solvothermal method for generation of reactive oxygen species under visible light.
    Saita S; Kawasaki H
    Luminescence; 2023 Feb; 38(2):127-135. PubMed ID: 36581317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy.
    Yu H; Chen B; Huang H; He Z; Sun J; Wang G; Gu X; Tang BZ
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-demand generation of singlet oxygen from a smart graphene complex for the photodynamic treatment of cancer cells.
    Yan L; Chang YN; Yin W; Tian G; Zhou L; Liu X; Xing G; Zhao L; Gu Z; Zhao Y
    Biomater Sci; 2014 Oct; 2(10):1412-1418. PubMed ID: 32481917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AIE material for photodynamic therapy.
    Saini V; Venkatesh V
    Prog Mol Biol Transl Sci; 2021; 185():45-73. PubMed ID: 34782107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Efficient Multifunctional Organic Photosensitizer with Aggregation-Induced Emission for
    Liao Y; Wang R; Wang S; Xie Y; Chen H; Huang R; Shao L; Zhu Q; Liu Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):54783-54793. PubMed ID: 34763423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current Limitations and Recent Progress in Nanomedicine for Clinically Available Photodynamic Therapy.
    Park J; Lee YK; Park IK; Hwang SR
    Biomedicines; 2021 Jan; 9(1):. PubMed ID: 33467201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen.
    Krajczewski J; Rucińska K; Townley HE; Kudelski A
    Photodiagnosis Photodyn Ther; 2019 Jun; 26():162-178. PubMed ID: 30914390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron Dipyrromethene Nano-Photosensitizers for Anticancer Phototherapies.
    Sun W; Zhao X; Fan J; Du J; Peng X
    Small; 2019 Aug; 15(32):e1804927. PubMed ID: 30785670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innovative strategies for enhanced tumor photodynamic therapy.
    Li G; Wang Q; Liu J; Wu M; Ji H; Qin Y; Zhou X; Wu L
    J Mater Chem B; 2021 Sep; 9(36):7347-7370. PubMed ID: 34382629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.