BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35514123)

  • 41. The role of small RNAs on phenotypes in reciprocal hybrids between Solanum lycopersicum and S. pimpinellifolium.
    Li J; Sun Q; Yu N; Zhu J; Zou X; Qi Z; Ghani MA; Chen L
    BMC Plant Biol; 2014 Nov; 14():296. PubMed ID: 25367629
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks.
    Fei Q; Xia R; Meyers BC
    Plant Cell; 2013 Jul; 25(7):2400-15. PubMed ID: 23881411
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SoMART: a web server for plant miRNA, tasiRNA and target gene analysis.
    Li F; Orban R; Baker B
    Plant J; 2012 Jun; 70(5):891-901. PubMed ID: 22268718
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants.
    Deng P; Muhammad S; Cao M; Wu L
    Plant Biotechnol J; 2018 May; 16(5):965-975. PubMed ID: 29327403
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction and characterization of Tomato leaf curl New Delhi virus (ToLCNDV) responsive novel microRNAs in Solanum lycopersicum.
    Pradhan B; Naqvi AR; Saraf S; Mukherjee SK; Dey N
    Virus Res; 2015 Jan; 195():183-95. PubMed ID: 25218481
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum).
    Yin Z; Li C; Han X; Shen F
    Gene; 2008 May; 414(1-2):60-6. PubMed ID: 18387754
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reproductive phasiRNAs in grasses are compositionally distinct from other classes of small RNAs.
    Patel P; Mathioni S; Kakrana A; Shatkay H; Meyers BC
    New Phytol; 2018 Nov; 220(3):851-864. PubMed ID: 30020552
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya.
    Aryal R; Yang X; Yu Q; Sunkar R; Li L; Ming R
    BMC Genomics; 2012 Dec; 13():682. PubMed ID: 23216749
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization and expression profiling of selected microRNAs in tomato (Solanum lycopersicon) 'Jiangshu14'.
    Korir NK; Li X; Xin S; Wang C; Changnian S; Kayesh E; Fang J
    Mol Biol Rep; 2013 May; 40(5):3503-21. PubMed ID: 23408149
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genomic Evidence for Complex Domestication History of the Cultivated Tomato in Latin America.
    Razifard H; Ramos A; Della Valle AL; Bodary C; Goetz E; Manser EJ; Li X; Zhang L; Visa S; Tieman D; van der Knaap E; Caicedo AL
    Mol Biol Evol; 2020 Apr; 37(4):1118-1132. PubMed ID: 31912142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-wide sequence variations between wild and cultivated tomato species revisited by whole genome sequence mapping.
    Sahu KK; Chattopadhyay D
    BMC Genomics; 2017 Jun; 18(1):430. PubMed ID: 28576139
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Domestication rewired gene expression and nucleotide diversity patterns in tomato.
    Sauvage C; Rau A; Aichholz C; Chadoeuf J; Sarah G; Ruiz M; Santoni S; Causse M; David J; Glémin S
    Plant J; 2017 Aug; 91(4):631-645. PubMed ID: 28488328
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Generation and characterization of a tomato DCL3-silencing mutant.
    Kravchik M; Damodharan S; Stav R; Arazi T
    Plant Sci; 2014 May; 221-222():81-9. PubMed ID: 24656338
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Processing of coding and non-coding RNAs in plant development and environmental responses.
    Si F; Cao X; Song X; Deng X
    Essays Biochem; 2020 Dec; 64(6):931-945. PubMed ID: 33236759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PhasiRNAs in Plants: Their Biogenesis, Genic Sources, and Roles in Stress Responses, Development, and Reproduction.
    Liu Y; Teng C; Xia R; Meyers BC
    Plant Cell; 2020 Oct; 32(10):3059-3080. PubMed ID: 32817252
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of Stress Associated microRNAs in
    López-Galiano MJ; Sentandreu V; Martínez-Ramírez AC; Rausell C; Real MD; Camañes G; Ruiz-Rivero O; Crespo-Salvador O; García-Robles I
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31234458
    [TBL] [Abstract][Full Text] [Related]  

  • 57. TarDB: an online database for plant miRNA targets and miRNA-triggered phased siRNAs.
    Liu J; Liu X; Zhang S; Liang S; Luan W; Ma X
    BMC Genomics; 2021 May; 22(1):348. PubMed ID: 33985427
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing.
    Liu H; Qin C; Chen Z; Zuo T; Yang X; Zhou H; Xu M; Cao S; Shen Y; Lin H; He X; Zhang Y; Li L; Ding H; Lübberstedt T; Zhang Z; Pan G
    BMC Genomics; 2014 Jan; 15():25. PubMed ID: 24422852
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening.
    Moxon S; Jing R; Szittya G; Schwach F; Rusholme Pilcher RL; Moulton V; Dalmay T
    Genome Res; 2008 Oct; 18(10):1602-9. PubMed ID: 18653800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expression and processing of polycistronic artificial microRNAs and trans-acting siRNAs from transiently introduced transgenes in Solanum lycopersicum and Nicotiana benthamiana.
    Lunardon A; Kariuki SM; Axtell MJ
    Plant J; 2021 May; 106(4):1087-1104. PubMed ID: 33655542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.