BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35514182)

  • 1. A Markov random field model-based approach for differentially expressed gene detection from single-cell RNA-seq data.
    Zhu B; Li H; Zhang L; Chandra SS; Zhao H
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Markov random field model for network-based differential expression analysis of single-cell RNA-seq data.
    Li H; Zhu B; Xu Z; Adams T; Kaminski N; Zhao H
    BMC Bioinformatics; 2021 Oct; 22(1):524. PubMed ID: 34702190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of differentially expressed genes in discrete single-cell RNA sequencing data using a hurdle model with correlated random effects.
    Sekula M; Gaskins J; Datta S
    Biometrics; 2019 Dec; 75(4):1051-1062. PubMed ID: 31009065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell Heterogeneity Analysis in Single-Cell RNA-seq Data Using Mixture Exponential Graph and Markov Random Field Model.
    Wang Y; Tian X; Ai D
    Biomed Res Int; 2021; 2021():9919080. PubMed ID: 34095314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse weighting method with jackknife variance estimator for differential expression analysis of single-cell RNA sequencing data.
    Zhou L; Pan Q
    Comput Biol Chem; 2022 Oct; 100():107733. PubMed ID: 35926443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scCODE: an R package for data-specific differentially expressed gene detection on single-cell RNA-sequencing data.
    Zou J; Deng F; Wang M; Zhang Z; Liu Z; Zhang X; Hua R; Chen K; Zou X; Hao J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35598331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data.
    Crowell HL; Soneson C; Germain PL; Calini D; Collin L; Raposo C; Malhotra D; Robinson MD
    Nat Commun; 2020 Nov; 11(1):6077. PubMed ID: 33257685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets.
    Liu H; Li H; Sharma A; Huang W; Pan D; Gu Y; Lin L; Sun X; Liu H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37183449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MLSpatial: A machine-learning method to reconstruct the spatial distribution of cells from scRNA-seq by extracting spatial features.
    Zhu M; Li C; Lv K; Guo H; Hou R; Tian G; Yang J
    Comput Biol Med; 2023 Jun; 159():106873. PubMed ID: 37105115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression of single-cell RNA-seq data using Tweedie models.
    Mallick H; Chatterjee S; Chowdhury S; Chatterjee S; Rahnavard A; Hicks SC
    Stat Med; 2022 Aug; 41(18):3492-3510. PubMed ID: 35656596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data.
    Junttila S; Smolander J; Elo LL
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35880426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in differential expression analysis for single-cell RNA-seq and spatially resolved transcriptomic studies.
    Guo X; Ning J; Chen Y; Liu G; Zhao L; Fan Y; Sun S
    Brief Funct Genomics; 2024 Mar; 23(2):95-109. PubMed ID: 37022699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.
    Wu H; Kirita Y; Donnelly EL; Humphreys BD
    J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LINEAGE: Label-free identification of endogenous informative single-cell mitochondrial RNA mutation for lineage analysis.
    Lin L; Zhang Y; Qian W; Liu Y; Zhang Y; Lin F; Liu C; Lu G; Sun D; Guo X; Song Y; Song J; Yang C; Li J
    Proc Natl Acad Sci U S A; 2022 Feb; 119(5):. PubMed ID: 35086932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.