These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35514378)

  • 21. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.
    Mahmood A; Zou R; Wang Q; Xia W; Tabassum H; Qiu B; Zhao R
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2148-57. PubMed ID: 26720405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hetero-structured MnO-Mn
    Li Y; Tang L; Deng D; He H; Yan X; Wang J; Luo L
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111443. PubMed ID: 33255035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance.
    Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible synthesis of high-performance electrode materials of N-doped carbon coating MnO nanowires for supercapacitors.
    Zhou T; Zhang W; Fu H; Fang J; Chen C; Wang Z
    Nanotechnology; 2021 Dec; 33(8):. PubMed ID: 34768241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduced graphene oxide/Mn
    Yao J; Yao S; Gao F; Duan L; Niu M; Liu J
    J Colloid Interface Sci; 2018 Feb; 511():434-439. PubMed ID: 29035806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on Electrochemical Performance of MnO@rGO/Carbon Fabric-Based Wearable Supercapacitors.
    Ke Q; Zhang Y; Fu Y; Yang C; Wu F; Li Z; Wei Y; Zhang K
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance.
    Zhu G; Wen H; Ma M; Wang W; Yang L; Wang L; Shi X; Cheng X; Sun X; Yao Y
    Chem Commun (Camb); 2018 Sep; 54(74):10499-10502. PubMed ID: 30159557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. General fabrication of metal-organic frameworks on electrospun modified carbon nanofibers for high-performance asymmetric supercapacitors.
    Tian D; Ao Y; Li W; Xu J; Wang C
    J Colloid Interface Sci; 2021 Dec; 603():199-209. PubMed ID: 34186398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device.
    Feng JX; Ye SH; Lu XF; Tong YX; Li GR
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11444-51. PubMed ID: 25961565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward Low-Cost and Sustainable Supercapacitor Electrode Processing: Simultaneous Carbon Grafting and Coating of Mixed-Valence Metal Oxides by Fast Annealing.
    Malaie K; Ganjali MR; Soavi F
    Front Chem; 2019; 7():25. PubMed ID: 30788338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boosting Electrochemistry of Manganese Oxide Nanosheets by Ostwald Ripening during Reduction for Fiber Electrochemical Energy Storage Device.
    Jia D; Chen X; Tan H; Liu F; Yue L; Zheng Y; Cao X; Li C; Sun Y; Liu H; Liu J
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30388-30399. PubMed ID: 30070464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MOF-derived binary mixed metal/metal oxide @carbon nanoporous materials and their novel supercapacitive performances.
    Wang YC; Li WB; Zhao L; Xu BQ
    Phys Chem Chem Phys; 2016 Jul; 18(27):17941-8. PubMed ID: 27328374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The oxidation capacity of Mn3O4 nanoparticles is significantly enhanced by anchoring them onto reduced graphene oxide to facilitate regeneration of surface-associated Mn(III).
    Duan L; Wang Z; Hou Y; Wang Z; Gao G; Chen W; Alvarez PJJ
    Water Res; 2016 Oct; 103():101-108. PubMed ID: 27448035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional carbon foam-metal oxide-based asymmetric electrodes for high-performance solid-state micro-supercapacitors.
    Kumar S; Misra A
    Nanoscale; 2021 Dec; 13(46):19453-19465. PubMed ID: 34790988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and Capacitance of Ni Metal Organic Framework/Reduced Graphene Oxide Composites for Supercapacitors as Nanoarchitectonics.
    Kim J; Park SJ; Chung S; Kim S
    J Nanosci Nanotechnol; 2020 May; 20(5):2750-2754. PubMed ID: 31635611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphitic Carbon with MnO/Mn
    Lam DV; Nguyen UNT; Roh E; Choi W; Kim JH; Kim H; Lee SM
    Small; 2021 Jul; 17(29):e2100670. PubMed ID: 34145746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors.
    Zhang L; Cai P; Wei Z; Liu T; Yu J; Al-Ghamdi AA; Wageh S
    J Colloid Interface Sci; 2021 Apr; 588():637-645. PubMed ID: 33267956
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors.
    Gao S; Sui Y; Wei F; Qi J; Meng Q; Ren Y; He Y
    J Colloid Interface Sci; 2018 Dec; 531():83-90. PubMed ID: 30025331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of Octanohydroxamic Acid for Salting out Liquid-Liquid Extraction of Materials for Energy Storage in Supercapacitors.
    Rorabeck K; Zhitomirsky I
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33435538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MOF-derived hierarchical core-shell hollow Co
    Tian Y; Xue Z; Zhao Q; Guo J; Tao K; Han L
    Dalton Trans; 2022 Mar; 51(11):4406-4413. PubMed ID: 35195144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.