These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35514638)

  • 1. Orbital-dependent redox potential regulation of quinone derivatives for electrical energy storage.
    Niu Z; Wu H; Lu Y; Xiong S; Zhu X; Zhao Y; Zhang X
    RSC Adv; 2019 Feb; 9(9):5164-5173. PubMed ID: 35514638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design.
    Zhong F; Yang M; Ding M; Jia C
    Front Chem; 2020; 8():451. PubMed ID: 32637392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Engineering of Organic Species for Aqueous Redox Flow Batteries.
    Zhu F; Guo W; Fu Y
    Chem Asian J; 2023 Jan; 18(2):e202201098. PubMed ID: 36454229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials.
    Winsberg J; Hagemann T; Janoschka T; Hager MD; Schubert US
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):686-711. PubMed ID: 28070964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review.
    Fischer P; Mazúr P; Krakowiak J
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyridyl group design in viologens for anolyte materials in organic redox flow batteries.
    Chen C; Zhang S; Zhu Y; Qian Y; Niu Z; Ye J; Zhao Y; Zhang X
    RSC Adv; 2018 May; 8(34):18762-18770. PubMed ID: 35539647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparative Review of Electrolytes for Organic-Material-Based Energy-Storage Devices Employing Solid Electrodes and Redox Fluids.
    Chen R; Bresser D; Saraf M; Gerlach P; Balducci A; Kunz S; Schröder D; Passerini S; Chen J
    ChemSusChem; 2020 May; 13(9):2205-2219. PubMed ID: 31995281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A metal-free organic-inorganic aqueous flow battery.
    Huskinson B; Marshak MP; Suh C; Er S; Gerhardt MR; Galvin CJ; Chen X; Aspuru-Guzik A; Gordon RG; Aziz MJ
    Nature; 2014 Jan; 505(7482):195-8. PubMed ID: 24402280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular engineering of organic electroactive materials for redox flow batteries.
    Ding Y; Zhang C; Zhang L; Zhou Y; Yu G
    Chem Soc Rev; 2018 Jan; 47(1):69-103. PubMed ID: 29044260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substituent Pattern Effects on the Redox Potentials of Quinone-Based Active Materials for Aqueous Redox Flow Batteries.
    Schwan S; Schröder D; Wegner HA; Janek J; Mollenhauer D
    ChemSusChem; 2020 Oct; 13(20):5480-5488. PubMed ID: 32798240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries.
    Kim KC; Liu T; Lee SW; Jang SS
    J Am Chem Soc; 2016 Feb; 138(7):2374-82. PubMed ID: 26824616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility.
    Wedege K; Dražević E; Konya D; Bentien A
    Sci Rep; 2016 Dec; 6():39101. PubMed ID: 27966605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational design of molecules for an all-quinone redox flow battery.
    Er S; Suh C; Marshak MP; Aspuru-Guzik A
    Chem Sci; 2015 Feb; 6(2):885-893. PubMed ID: 29560173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenothiazine-Based Organic Catholyte for High-Capacity and Long-Life Aqueous Redox Flow Batteries.
    Zhang C; Niu Z; Peng S; Ding Y; Zhang L; Guo X; Zhao Y; Yu G
    Adv Mater; 2019 Jun; 31(24):e1901052. PubMed ID: 30998269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in the Development of Organic and Organometallic Redox Shuttles for Lithium-Ion Redox Flow Batteries.
    Pham-Truong TN; Wang Q; Ghilane J; Randriamahazaka H
    ChemSusChem; 2020 May; 13(9):2142-2159. PubMed ID: 32293115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blatter Radicals as Bipolar Materials for Symmetrical Redox-Flow Batteries.
    Steen JS; Nuismer JL; Eiva V; Wiglema AET; Daub N; Hjelm J; Otten E
    J Am Chem Soc; 2022 Mar; 144(11):5051-5058. PubMed ID: 35258956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Nonaqueous Redox Flow Batteries.
    Sharma S; Rathod S; Prakash Yadav S; Chakraborty A; Shukla AK; Aetukuri N; Patil S
    Chemistry; 2021 Aug; 27(47):12172-12180. PubMed ID: 34041796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-Organic Redox Targeting with a Single Redox Moiety: Combining Organic Radical Batteries and Organic Redox Flow Batteries.
    Schröter E; Stolze C; Saal A; Schreyer K; Hager MD; Schubert US
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6638-6648. PubMed ID: 35084188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel, Stable Catholyte for Aqueous Organic Redox Flow Batteries: Symmetric Cell Study of Hydroquinones with High Accessible Capacity.
    Yang X; Garcia SN; Janoschka T; Kónya D; Hager MD; Schubert US
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34201612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.