These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35514638)

  • 21. Tuning Intermolecular Interactions to Enhance the Cyclability of Non-Aqueous, Organic Redox Flow Batteries.
    Zhang L; Liu Y; Chen Y; Zhu Y; Wang R; Dai G; Zhang X; Zhao Y
    Chem Asian J; 2022 Dec; 17(24):e202200901. PubMed ID: 36239205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. General Design Methodology for Organic Eutectic Electrolytes toward High-Energy-Density Redox Flow Batteries.
    Zhang C; Chen H; Qian Y; Dai G; Zhao Y; Yu G
    Adv Mater; 2021 Apr; 33(15):e2008560. PubMed ID: 33687776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.
    Ma T; Pan Z; Miao L; Chen C; Han M; Shang Z; Chen J
    Angew Chem Int Ed Engl; 2018 Mar; 57(12):3158-3162. PubMed ID: 29363241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries.
    Zhang L; Qian Y; Feng R; Ding Y; Zu X; Zhang C; Guo X; Wang W; Yu G
    Nat Commun; 2020 Jul; 11(1):3843. PubMed ID: 32737297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox-Active Eutectic Electrolyte with Viologen and Ferrocene Derivatives for Flow Batteries.
    Ghahremani R; Dean W; Sinclair N; Shen X; Starvaggi N; Alfurayj I; Burda C; Pentzer E; Wainright J; Savinell R; Gurkan B
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1148-1156. PubMed ID: 36563037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery.
    Zhou M; Chen Y; Salla M; Zhang H; Wang X; Mothe SR; Wang Q
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14286-14291. PubMed ID: 32510721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Material Design of Aqueous Redox Flow Batteries: Fundamental Challenges and Mitigation Strategies.
    Li Z; Lu YC
    Adv Mater; 2020 Nov; 32(47):e2002132. PubMed ID: 33094532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing the solubility of 1,4-diaminoanthraquinones in electrolytes for organic redox flow batteries through molecular modification.
    Geysens P; Evers J; Dehaen W; Fransaer J; Binnemans K
    RSC Adv; 2020 Oct; 10(65):39601-39610. PubMed ID: 35515364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox-active polyimides for energy conversion and storage: from synthesis to application.
    Kim T; Lee J; Kim N; Lee S; Gu M; Kim BS
    Chem Commun (Camb); 2022 Dec; 59(2):153-169. PubMed ID: 36477739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into the Redox Chemistry of Organosulfides Towards Stable Molecule Design in Nonaqueous Energy Storage Systems.
    Zhang L; Zhao B; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):4322-4328. PubMed ID: 33170992
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the Performance of Aqueous Organic Redox Flow Batteries via First-Principles Calculations.
    Yu J; Zhao TS; Pan D
    J Phys Chem Lett; 2020 Dec; 11(24):10433-10438. PubMed ID: 33269931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Bipolar and Self-Polymerized Phthalocyanine Complex for Fast and Tunable Energy Storage in Dual-Ion Batteries.
    Wang HG; Wang H; Si Z; Li Q; Wu Q; Shao Q; Wu L; Liu Y; Wang Y; Song S; Zhang H
    Angew Chem Int Ed Engl; 2019 Jul; 58(30):10204-10208. PubMed ID: 31127675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Design Strategy for High-Redox-Potential and Poorly Soluble n-Type Phenazine Derivatives as Cathode Materials for Lithium Batteries.
    Miao L; Liu L; Zhang K; Chen J
    ChemSusChem; 2020 May; 13(9):2337-2344. PubMed ID: 31968154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries.
    Zu X; Zhang L; Qian Y; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22163-22170. PubMed ID: 32841494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the Redox Potentials of Phenazine Derivatives Using DFT-Assisted Machine Learning.
    Ghule S; Dash SR; Bagchi S; Joshi K; Vanka K
    ACS Omega; 2022 Apr; 7(14):11742-11755. PubMed ID: 35449912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery.
    Yan Y; Robinson SG; Sigman MS; Sanford MS
    J Am Chem Soc; 2019 Sep; 141(38):15301-15306. PubMed ID: 31503480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microemulsions: Breakthrough Electrolytes for Redox Flow Batteries.
    Barth BA; Imel A; Nelms KM; Goenaga GA; Zawodzinski T
    Front Chem; 2022; 10():831200. PubMed ID: 35308789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.
    Li W; Fu HC; Li L; Cabán-Acevedo M; He JH; Jin S
    Angew Chem Int Ed Engl; 2016 Oct; 55(42):13104-13108. PubMed ID: 27654317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.