These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 35514708)
1. Facile synthesis of Ma B; Huang Y; Nie Z; Qiu X; Su D; Wang G; Yuan J; Xie X; Wu Z RSC Adv; 2019 Jun; 9(35):20424-20431. PubMed ID: 35514708 [TBL] [Abstract][Full Text] [Related]
2. Sulfur-impregnated core-shell hierarchical porous carbon for lithium-sulfur batteries. Zhang FF; Huang G; Wang XX; Qin YL; Du XC; Yin DM; Liang F; Wang LM Chemistry; 2014 Dec; 20(52):17523-9. PubMed ID: 25346404 [TBL] [Abstract][Full Text] [Related]
3. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. Zheng F; He M; Yang Y; Chen Q Nanoscale; 2015 Feb; 7(8):3410-7. PubMed ID: 25631451 [TBL] [Abstract][Full Text] [Related]
4. Nitrogen-Doped Porous Carbon Nanosheets from Eco-Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries. Mondal AK; Kretschmer K; Zhao Y; Liu H; Wang C; Sun B; Wang G Chemistry; 2017 Mar; 23(15):3683-3690. PubMed ID: 28039908 [TBL] [Abstract][Full Text] [Related]
5. N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries. Xiong J; Pan Q; Zheng F; Xiong X; Yang C; Hu D; Huang C Front Chem; 2018; 6():78. PubMed ID: 29755966 [TBL] [Abstract][Full Text] [Related]
6. Porous hard carbon spheres derived from biomass for high-performance sodium/potassium-ion batteries. Chen S; Tang K; Song F; Liu Z; Zhang N; Lan S; Xie X; Wu Z Nanotechnology; 2021 Nov; 33(5):. PubMed ID: 34670206 [TBL] [Abstract][Full Text] [Related]
7. Flexible anode materials for lithium-ion batteries derived from waste biomass-based carbon nanofibers: I. Effect of carbonization temperature. Tao L; Huang Y; Yang X; Zheng Y; Liu C; Di M; Zheng Z RSC Adv; 2018 Feb; 8(13):7102-7109. PubMed ID: 35540347 [TBL] [Abstract][Full Text] [Related]
8. BODIPY-Based Conjugated Porous Polymer and Its Derived Porous Carbon for Lithium-Ion Storage. Li G; Yin JF; Guo H; Wang Z; Zhang Y; Li X; Wang J; Yin Z; Kuang GC ACS Omega; 2018 Jul; 3(7):7727-7735. PubMed ID: 31458920 [TBL] [Abstract][Full Text] [Related]
9. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries. Zhang J; Cai Y; Zhong Q; Lai D; Yao J Nanoscale; 2015 Nov; 7(42):17791-7. PubMed ID: 26456870 [TBL] [Abstract][Full Text] [Related]
10. Porous Core-Shell CuCo Zheng T; Li G; Meng X; Li S; Ren M Chemistry; 2019 Jan; 25(3):885-891. PubMed ID: 30412335 [TBL] [Abstract][Full Text] [Related]
11. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries. Chen JJ; Zhang Q; Shi YN; Qin LL; Cao Y; Zheng MS; Dong QF Phys Chem Chem Phys; 2012 Apr; 14(16):5376-82. PubMed ID: 22382743 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen and Oxygen Co-Doped Porous Hard Carbon Nanospheres with Core-Shell Architecture as Anode Materials for Superior Potassium-Ion Storage. Chong S; Yuan L; Li T; Shu C; Qiao S; Dong S; Liu Z; Yang J; Liu HK; Dou SX; Huang W Small; 2022 Feb; 18(8):e2104296. PubMed ID: 34873861 [TBL] [Abstract][Full Text] [Related]
13. Free-Standing Carbon Nanofiber Composite Networks Derived from Bacterial Cellulose and Polypyrrole for Ultrastable Potassium-Ion Batteries. Liu Z; Yue L; Wang C; Li D; Tang L; Ma R; Li B; Yang T; Liu X; Xu Q; Wang J; Gao M ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36913555 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance. Zhai Y; Xu B; Zhu Y; Qing R; Peng C; Wang T; Li C; Zeng G Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():449-56. PubMed ID: 26838871 [TBL] [Abstract][Full Text] [Related]
15. A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries. He M; Yuan L; Hu X; Zhang W; Shu J; Huang Y Nanoscale; 2013 Apr; 5(8):3298-305. PubMed ID: 23483088 [TBL] [Abstract][Full Text] [Related]
16. Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. Lu H; Chen R; Hu Y; Wang X; Wang Y; Ma L; Zhu G; Chen T; Tie Z; Jin Z; Liu J Nanoscale; 2017 Feb; 9(5):1972-1977. PubMed ID: 28102408 [TBL] [Abstract][Full Text] [Related]
17. Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries. Wang J; Li W; Wang F; Xia Y; Asiri AM; Zhao D Nanoscale; 2014 Mar; 6(6):3217-22. PubMed ID: 24500178 [TBL] [Abstract][Full Text] [Related]
18. Facile Synthesis of Core-Shell Structured SiO Pang H; Zhang W; Yu P; Pan N; Hu H; Zheng M; Xiao Y; Liu Y; Liang Y Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32178223 [TBL] [Abstract][Full Text] [Related]
19. Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries. Wang Q; Zou R; Xia W; Ma J; Qiu B; Mahmood A; Zhao R; Yang Y; Xia D; Xu Q Small; 2015 Jun; 11(21):2511-7. PubMed ID: 25688868 [TBL] [Abstract][Full Text] [Related]
20. Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries. Wang K; Jin Y; Sun S; Huang Y; Peng J; Luo J; Zhang Q; Qiu Y; Fang C; Han J ACS Omega; 2017 Apr; 2(4):1687-1695. PubMed ID: 31457533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]