These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 35514709)
1. Inorganic carbonate composites as potential high temperature CO Vall M; Hultberg J; Strømme M; Cheung O RSC Adv; 2019 Jun; 9(35):20273-20280. PubMed ID: 35514709 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag. Tian S; Jiang J; Yan F; Li K; Chen X Environ Sci Technol; 2015 Jun; 49(12):7464-72. PubMed ID: 25961319 [TBL] [Abstract][Full Text] [Related]
4. Advanced High-Temperature CO Nityashree N; Manohara GV; Maroto-Valer MM; Garcia S ACS Appl Mater Interfaces; 2020 Jul; 12(30):33765-33774. PubMed ID: 32609484 [TBL] [Abstract][Full Text] [Related]
5. A Model to Stabilize CO Zhu Q; Zeng S; Yu Y Environ Sci Technol; 2017 Jan; 51(1):552-559. PubMed ID: 27982575 [TBL] [Abstract][Full Text] [Related]
6. Of Glasses and Crystals: Mitigating the Deactivation of CaO-Based CO Krödel M; Leroy C; Kim SM; Naeem MA; Kierzkowska A; Wu YH; Armutlulu A; Fedorov A; Florian P; Müller CR JACS Au; 2023 Nov; 3(11):3111-3126. PubMed ID: 38034972 [TBL] [Abstract][Full Text] [Related]
7. The development of effective CaO-based CO Naeem MA; Armutlulu A; Broda M; Lebedev D; Müller CR Faraday Discuss; 2016 Oct; 192():85-95. PubMed ID: 27479522 [TBL] [Abstract][Full Text] [Related]
8. Ultrafast and Stable CO Cui H; Zhang Q; Hu Y; Peng C; Fang X; Cheng Z; Galvita VV; Zhou Z ACS Appl Mater Interfaces; 2018 Jun; 10(24):20611-20620. PubMed ID: 29855184 [TBL] [Abstract][Full Text] [Related]
9. Understanding the Role of Mono and Ternary Alkali Metal Salts on CO Correia P; Pinheiro CIC; Teixeira P Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138682 [TBL] [Abstract][Full Text] [Related]
10. Self-reactivated mesostructured Ca-Al-O composite for enhanced high-temperature CO2 capture and carbonation/calcination cycles performance. Chang PH; Huang WC; Lee TJ; Chang YP; Chen SY ACS Appl Mater Interfaces; 2015 Mar; 7(11):6172-9. PubMed ID: 25730384 [TBL] [Abstract][Full Text] [Related]
11. Solution combustion synthesis of MgO-stabilized CaO sorbents using polyethylene glycol as fuel and dispersant. Sun R; Shen H; Lv X; Wang Y; Hu T RSC Adv; 2024 Jan; 14(3):1741-1749. PubMed ID: 38192307 [TBL] [Abstract][Full Text] [Related]
12. The use of in situ powder X-ray diffraction in the investigation of dolomite as a potential reversible high-temperature CO2 sorbent. Readman JE; Blom R Phys Chem Chem Phys; 2005 Mar; 7(6):1214-9. PubMed ID: 19791335 [TBL] [Abstract][Full Text] [Related]
14. Porous spherical CaO-based sorbents via PSS-assisted fast precipitation for CO2 capture. Wang S; Fan L; Li C; Zhao Y; Ma X ACS Appl Mater Interfaces; 2014 Oct; 6(20):18072-7. PubMed ID: 25252009 [TBL] [Abstract][Full Text] [Related]
16. Tailor-Made Core-Shell CaO/TiO2-Al2O3 Architecture as a High-Capacity and Long-Life CO2 Sorbent. Peng W; Xu Z; Luo C; Zhao H Environ Sci Technol; 2015 Jul; 49(13):8237-45. PubMed ID: 26047026 [TBL] [Abstract][Full Text] [Related]
18. Sintering of calcium oxide (CaO) during CO2 chemisorption: a reactive molecular dynamics study. Zhang L; Lu Y; Rostam-Abadi M Phys Chem Chem Phys; 2012 Dec; 14(48):16633-43. PubMed ID: 22990764 [TBL] [Abstract][Full Text] [Related]
19. Influence of the operation conditions on CO2 capture by CaO-derived sorbents prepared from synthetic CaCO3. Nieto-Sanchez AJ; Olivares-Marin M; Garcia S; Pevida C; Cuerda-Correa EM Chemosphere; 2013 Nov; 93(9):2148-58. PubMed ID: 24035693 [TBL] [Abstract][Full Text] [Related]
20. Blending Wastes of Marble Powder and Dolomite Sorbents for Calcium-Looping CO Teixeira P; Fernandes A; Ribeiro F; Pinheiro CIC Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]