These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35514715)

  • 1. Modelling the formation of porous organic gels - how structural properties depend on growth conditions.
    Prostredny M; Fletcher A; Mulheran P
    RSC Adv; 2019 Jun; 9(35):20065-20074. PubMed ID: 35514715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling Organic Gel Growth in Three Dimensions: Textural and Fractal Properties of Resorcinol-Formaldehyde Gels.
    Martin E; Prostredny M; Fletcher A; Mulheran P
    Gels; 2020 Aug; 6(3):. PubMed ID: 32764292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing Computational Analysis of Porous Materials-Modeling Three-Dimensional Gas Adsorption in Organic Gels.
    Martin E; Prostredny M; Fletcher A; Mulheran P
    J Phys Chem B; 2021 Feb; 125(7):1960-1969. PubMed ID: 33591747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of diffusion parameters in functionalized silicas with modulated porosity. Part II: pore network modeling.
    Armatas GS; Petrakis DE; Pomonis PJ
    J Chromatogr A; 2005 May; 1074(1-2):61-9. PubMed ID: 15941040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size effects on diffusion processes within agarose gels.
    Fatin-Rouge N; Starchev K; Buffle J
    Biophys J; 2004 May; 86(5):2710-9. PubMed ID: 15111390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal characteristics of shale pore structure and its influence on seepage flow.
    Wang S; Li X; Xue H; Shen Z; Chen L
    R Soc Open Sci; 2021 May; 8(5):202271. PubMed ID: 34017601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Cations in Resorcinol-Formaldehyde Gel Textural Characteristics.
    Taylor SJ; Yang L; Fletcher AJ
    Gels; 2022 Jan; 8(1):. PubMed ID: 35049595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing and Interpreting the Porosity and Tortuosity Evolution of Li-O
    Torayev A; Engelke S; Su Z; Marbella LE; De Andrade V; Demortière A; Magusin PCMM; Merlet C; Franco AA; Grey CP
    J Phys Chem C Nanomater Interfaces; 2021 Mar; 125(9):4955-4967. PubMed ID: 33763164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Angle Investigation of the Fractal Characteristics of Nanoscale Pores in the Lower Cambrian Niutitang Shale and Their Implications for CH₄ Adsorption.
    Wang Y; Wu C; Qin Y; Liu S; Zhang R
    J Nanosci Nanotechnol; 2021 Jan; 21(1):156-167. PubMed ID: 33213620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Interesting Class of Porous Polymer--Revisiting the Structure of Mesoporous α-D-Polysaccharide Gels.
    White RJ; Shuttleworth PS; Budarin VL; De Bruyn M; Fischer A; Clark JH
    ChemSusChem; 2016 Feb; 9(3):280-8. PubMed ID: 26785060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelation mechanism of resorcinol-formaldehyde gels investigated by dynamic light scattering.
    Taylor SJ; Haw MD; Sefcik J; Fletcher AJ
    Langmuir; 2014 Sep; 30(34):10231-40. PubMed ID: 25100498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling network formation in folded protein hydrogels by cluster aggregation kinetics.
    Cook KR; Head D; Dougan L
    Soft Matter; 2023 Apr; 19(15):2780-2791. PubMed ID: 36988480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods.
    Huang X; Zhou W; Deng D
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and flow properties of binary media generated by fractional Brownian motion models.
    Kikkinides ES; Burganos VN
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):7185-94. PubMed ID: 11969708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Boltzmann simulation of multicomponent noncontinuum diffusion in fractal porous structures.
    Ma Q; Chen Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013025. PubMed ID: 26274287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-transport correlation for the diffusive tortuosity of bulk, monodisperse, random sphere packings.
    Khirevich S; Höltzel A; Daneyko A; Seidel-Morgenstern A; Tallarek U
    J Chromatogr A; 2011 Sep; 1218(37):6489-97. PubMed ID: 21831382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of aqueous transport in rigid porous matrices near the percolation threshold.
    Ellis SR; Wright JL
    Pharm Res; 2006 Oct; 23(10):2441-53. PubMed ID: 16933095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulation of particle aggregation and gelation: I. Growth, structure and size distribution of the clusters.
    Rottereau M; Gimel JC; Nicolai T; Durand D
    Eur Phys J E Soft Matter; 2004 Oct; 15(2):133-40. PubMed ID: 15517458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction by molecular dynamics modeling and simulations of the porous structures formed by dextran polymer chains attached on the surface of the pores of a base matrix: characterization of porous structures.
    Zhang X; Wang JC; Lacki KM; Liapis AI
    J Phys Chem B; 2005 Nov; 109(44):21028-39. PubMed ID: 16853725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.