BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35514931)

  • 21. pH/Thermo-Dual Responsive Tunable In Situ Cross-Linkable Depot Injectable Hydrogels Based on Poly(N-Isopropylacrylamide)/Carboxymethyl Chitosan with Potential of Controlled Localized and Systemic Drug Delivery.
    Khan S; Akhtar N; Minhas MU; Badshah SF
    AAPS PharmSciTech; 2019 Feb; 20(3):119. PubMed ID: 30790143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FRET-derived ratiometric fluorescent K+ sensors fabricated from thermoresponsive poly(N-isopropylacrylamide) microgels labeled with crown ether moieties.
    Yin J; Li C; Wang D; Liu S
    J Phys Chem B; 2010 Sep; 114(38):12213-20. PubMed ID: 20825175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the temperature-responsive polymers and gels based on N-propylacrylamides and N-propylmethacrylamides.
    Kano M; Kokufuta E
    Langmuir; 2009 Aug; 25(15):8649-55. PubMed ID: 19323452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and properties of thermo-sensitive organic/inorganic hybrid microgels.
    Cao Z; Du B; Chen T; Nie J; Xu J; Fan Z
    Langmuir; 2008 Nov; 24(22):12771-8. PubMed ID: 18950208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermo-induced inversion of water-in-water emulsion stability by bis-hydrophilic microgels.
    Merland T; Waldmann L; Guignard O; Tatry MC; Wirotius AL; Lapeyre V; Garrigue P; Nicolai T; Benyahia L; Ravaine V
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1191-1201. PubMed ID: 34735854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lower Critical Solution Temperature Tuning and Swelling Behaviours of NVCL-Based Hydrogels for Potential 4D Printing Applications.
    Zhuo S; Halligan E; Tie BSH; Breheny C; Geever LM
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Equilibrium and kinetic aspects of the uptake of poly(ethylene oxide) by copolymer microgel particles of N-isopropylacrylamide and acrylic acid.
    Bradley M; Ramos J; Vincent B
    Langmuir; 2005 Feb; 21(4):1209-15. PubMed ID: 15697262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature- and pH-responsive poly(
    Agnihotri P; Sangeeta ; Aery S; Dan A
    Soft Matter; 2021 Nov; 17(42):9595-9606. PubMed ID: 34633021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unusual temperature-induced swelling of ionizable poly(N-isopropylacrylamide)-based microgels: experimental and theoretical insights into its molecular origin.
    Giussi JM; Velasco MI; Longo GS; Acosta RH; Azzaroni O
    Soft Matter; 2015 Dec; 11(45):8879-86. PubMed ID: 26400774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Short oligo(ethylene glycol) chain incorporated thermoresponsive microgels: from structural analysis to modulation of solution properties.
    Agnihotri P; Raj R; Kumar D; Dan A
    Soft Matter; 2020 Aug; 16(33):7845-7859. PubMed ID: 32756713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal-chelating and dansyl-labeled poly(N-isopropylacrylamide) microgels as fluorescent Cu2+ sensors with thermo-enhanced detection sensitivity.
    Yin J; Guan X; Wang D; Liu S
    Langmuir; 2009 Oct; 25(19):11367-74. PubMed ID: 19708645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of the influences of bathing solution and crosslink density on the swelling equilibrium of ionic thermo-sensitive hydrogels.
    Li H; Wang Z; Wang X; Lam KY
    Biophys Chem; 2005 Dec; 118(2-3):57-68. PubMed ID: 16055257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer simulations of thermo-sensitive microgels: quantitative comparison with experimental swelling data.
    Quesada-Pérez M; Ramos J; Forcada J; Martín-Molina A
    J Chem Phys; 2012 Jun; 136(24):244903. PubMed ID: 22755599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulating the phase transition temperature and thermosensitivity in N-isopropylacrylamide copolymer gels.
    Yoshida R; Sakai K; Okano T; Sakurai Y
    J Biomater Sci Polym Ed; 1994; 6(6):585-98. PubMed ID: 7873510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidics-assisted generation of stimuli-responsive hydrogels based on alginates incorporated with thermo-responsive and amphiphilic polymers as novel biomaterials.
    Karakasyan C; Mathos J; Lack S; Davy J; Marquis M; Renard D
    Colloids Surf B Biointerfaces; 2015 Nov; 135():619-629. PubMed ID: 26322476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning the tribological property with thermal sensitive microgels for aqueous lubrication.
    Liu G; Wang X; Zhou F; Liu W
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10842-52. PubMed ID: 24117133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dielectric relaxations of poly(N-isopropylacrylamide) microgels near the volume phase transition temperature: impact of cross-linking density distribution on the volume phase transition.
    Su W; Zhao K; Wei J; Ngai T
    Soft Matter; 2014 Nov; 10(43):8711-23. PubMed ID: 25263641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization.
    Brändel T; Dirksen M; Hellweg T
    Polymers (Basel); 2019 Jul; 11(8):. PubMed ID: 31370213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermo-, pH-, and light-responsive poly(N-isopropylacrylamide-co-methacrylic acid)--Au hybrid microgels prepared by the in situ reduction method based on Au-thiol chemistry.
    Shi S; Wang Q; Wang T; Ren S; Gao Y; Wang N
    J Phys Chem B; 2014 Jun; 118(25):7177-86. PubMed ID: 24897339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiphysics modelling of volume phase transition of ionic hydrogels responsive to thermal stimulus.
    Li H; Wang X; Wang Z; Lam KY
    Macromol Biosci; 2005 Sep; 5(9):904-14. PubMed ID: 16136570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.