These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35515219)

  • 21. Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures.
    Kontoleta E; Tsoukala A; Askes SHC; Zoethout E; Oksenberg E; Agrawal H; Garnett EC
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):35986-35994. PubMed ID: 32672034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hot plasmonic electron-driven catalytic reactions on patterned metal-insulator-metal nanostructures.
    Kim SM; Lee C; Goddeti KC; Park JY
    Nanoscale; 2017 Aug; 9(32):11667-11677. PubMed ID: 28776052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of plasmon resonance in metal/dielectric nanocavities for high-efficiency photocatalytic device.
    Rajput NS; Shao-Horn Y; Li XH; Kim SG; Jouiad M
    Phys Chem Chem Phys; 2017 Jul; 19(26):16989-16999. PubMed ID: 28597895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantification of Efficient Plasmonic Hot-Electron Injection in Gold Nanoparticle-TiO
    Ratchford DC; Dunkelberger AD; Vurgaftman I; Owrutsky JC; Pehrsson PE
    Nano Lett; 2017 Oct; 17(10):6047-6055. PubMed ID: 28850243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual-Plasmonic Gold@Copper Sulfide Core-Shell Nanoparticles: Phase-Selective Synthesis and Multimodal Photothermal and Photocatalytic Behaviors.
    Sun M; Fu X; Chen K; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46146-46161. PubMed ID: 32955860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmon-induced electron injection into the large negative potential conduction band of Ga
    Wang Y; Shi X; Oshikiri T; Zu S; Ueno K; Misawa H
    Nanoscale; 2020 Nov; 12(44):22674-22679. PubMed ID: 33156317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Comparison of Photocatalytic Activities of Gold Nanoparticles Following Plasmonic and Interband Excitation and a Strategy for Harnessing Interband Hot Carriers for Solution Phase Photocatalysis.
    Zhao J; Nguyen SC; Ye R; Ye B; Weller H; Somorjai GA; Alivisatos AP; Toste FD
    ACS Cent Sci; 2017 May; 3(5):482-488. PubMed ID: 28573211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers.
    Mubeen S; Hernandez-Sosa G; Moses D; Lee J; Moskovits M
    Nano Lett; 2011 Dec; 11(12):5548-52. PubMed ID: 22040462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased Intraband Transitions in Smaller Gold Nanorods Enhance Light Emission.
    Ostovar B; Cai YY; Tauzin LJ; Lee SA; Ahmadivand A; Zhang R; Nordlander P; Link S
    ACS Nano; 2020 Nov; 14(11):15757-15765. PubMed ID: 32852941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles.
    Zhang X; Huang C; Wang M; Huang P; He X; Wei Z
    Sci Rep; 2018 Jul; 8(1):10499. PubMed ID: 30002475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hot-Hole
    Tagliabue G; DuChene JS; Habib A; Sundararaman R; Atwater HA
    ACS Nano; 2020 May; 14(5):5788-5797. PubMed ID: 32286797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.
    Lee YK; Lee H; Lee C; Hwang E; Park JY
    J Phys Condens Matter; 2016 Jun; 28(25):254006. PubMed ID: 27168177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO₂ Nanostructures.
    Fang Y; Jiao Y; Xiong K; Ogier R; Yang ZJ; Gao S; Dahlin AB; Käll M
    Nano Lett; 2015 Jun; 15(6):4059-65. PubMed ID: 25938263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline.
    Barman T; Hussain AA; Sharma B; Pal AR
    Sci Rep; 2015 Dec; 5():18276. PubMed ID: 26656664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of anisotropic electron momentum distribution of surface plasmon on internal photoemission of a Schottky hot carrier device.
    Li XH; Chou JB; Kwan WL; Elsharif AM; Kim SG
    Opt Express; 2017 Apr; 25(8):A264-A273. PubMed ID: 28437894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hot-electron-transfer enhancement for the efficient energy conversion of visible light.
    Yu S; Kim YH; Lee SY; Song HD; Yi J
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11203-7. PubMed ID: 25169852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays.
    Dao TD; Han G; Arai N; Nabatame T; Wada Y; Hoang CV; Aono M; Nagao T
    Phys Chem Chem Phys; 2015 Mar; 17(11):7395-403. PubMed ID: 25700130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.