BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35515282)

  • 1. Soft ionic liquid multi-point touch sensor.
    Fastier-Wooller J; Dinh T; Dau VT; Dao DV
    RSC Adv; 2019 Apr; 9(19):10733-10738. PubMed ID: 35515282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin.
    Qiu J; Guo X; Chu R; Wang S; Zeng W; Qu L; Zhao Y; Yan F; Xing G
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40716-40725. PubMed ID: 31596567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidimensional Tactile Sensor with a Thin Compound Eye-Inspired Imaging System.
    Zhang Y; Chen X; Wang MY; Yu H
    Soft Robot; 2022 Oct; 9(5):861-870. PubMed ID: 34619070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E-Skin Using Fringing Field Electrical Impedance Tomography with an Ionic Liquid Domain.
    Soleimani M; Friedrich M
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive Touch Sensor for Simultaneous Tactile and Slip Sensing.
    Liu Y; Tao J; Mo Y; Bao R; Pan C
    Adv Mater; 2024 May; 36(21):e2313857. PubMed ID: 38335503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing.
    Wang L; Liu Y; Liu Q; Zhu Y; Wang H; Xie Z; Yu X; Zi Y
    Microsyst Nanoeng; 2020; 6():59. PubMed ID: 34567670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Fabrication of 3D Porous Sponges Coated with Synergistic Carbon Black/Multiwalled Carbon Nanotubes for Tactile Sensing Applications.
    Al-Handarish Y; Omisore OM; Duan W; Chen J; Zebang L; Akinyemi TO; Du W; Li H; Wang L
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 33003491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach for an ultrasensitive tactile sensor covering an ultrawide pressure range based on the hierarchical pressure-peak effect.
    Wu C; Zhang T; Zhang J; Huang J; Tang X; Zhou T; Rong Y; Huang Y; Shi S; Zeng D
    Nanoscale Horiz; 2020 Mar; 5(3):541-552. PubMed ID: 32118233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Static Tactile Sensing for a Robotic Electronic Skin via an Electromechanical Impedance-Based Approach.
    Liu C; Zhuang Y; Nasrollahi A; Lu L; Haider MF; Chang FK
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent Pressure Sensor with High Linearity over a Wide Pressure Range for 3D Touch Screen Applications.
    Choi HB; Oh J; Kim Y; Pyatykh M; Chang Yang J; Ryu S; Park S
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16691-16699. PubMed ID: 32180401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Multi-Stimulus-Responsive E-Skin Based on an Ionic Film with a Counter-Ion Exchange Reagent.
    Chen B; Shen K; Li Y; Huang B; Su H; Xu J; Yang S; Zhou Q; Lan L; Peng J; Cao Y
    Small; 2024 Feb; ():e2310847. PubMed ID: 38385814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Sensitive Textile-Based Capacitive Pressure Sensors Using PVDF-HFP/Ionic Liquid Composite Films.
    Keum K; Heo JS; Eom J; Lee KW; Park SK; Kim YH
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intentional Blocking Based Photoelectric Soft Pressure Sensor with High Sensitivity and Stability.
    Li Z; Cheng L; Liu Z
    Soft Robot; 2023 Feb; 10(1):205-216. PubMed ID: 35605098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive and wide-detection range pressure sensor constructed on a hierarchical-structured conductive fabric as a human-machine interface.
    Chen T; Zhang SH; Lin QH; Wang MJ; Yang Z; Zhang YL; Wang FX; Sun LN
    Nanoscale; 2020 Oct; 12(41):21271-21279. PubMed ID: 33063798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexadecyltrimethylammonium bromide (CTA-Br) and 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF
    Comelles F; Ribosa I; Gonzalez JJ; Garcia MT
    J Colloid Interface Sci; 2017 Mar; 490():119-128. PubMed ID: 27870952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive stretchable bimodal sensor based on novel elastomer and ionic liquid for temperature and humidity detection.
    Xian T; Xu X; Liu W; Ding J
    Heliyon; 2024 Feb; 10(4):e25874. PubMed ID: 38375242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Influences of 1-Butyl-3-Methylimidazolium Tetrafluoroborate on Electrochemical, Thermal and Structural Studies as Ionic Liquid Gel Polymer Electrolyte.
    Dzulkipli MZ; Karim J; Ahmad A; Dzulkurnain NA; Su'ait MS; Yoshizawa-Fujita M; Tian Khoon L; Hassan NH
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33919960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Piezoresistive Tactile Sensor Based on Polymeric Nanocomposites with Grid-Type Microstructure.
    Lee DH; Chuang CH; Shaikh MO; Dai YS; Wang SY; Wen ZH; Yen CK; Liao CF; Pan CT
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33923849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cutaneous Ionogel Mechanoreceptors for Soft Machines, Physiological Sensing, and Amputee Prostheses.
    Shen Z; Zhu X; Majidi C; Gu G
    Adv Mater; 2021 Sep; 33(38):e2102069. PubMed ID: 34337793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive Multimodal Tactile Sensors with Skin-Inspired Microstructures through Localized Ferroelectric Polarization.
    Shin YE; Park YJ; Ghosh SK; Lee Y; Park J; Ko H
    Adv Sci (Weinh); 2022 Mar; 9(9):e2105423. PubMed ID: 35072354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.