These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 35515368)
1. Cellulose hydrolysis using ionic liquids and inorganic acids under dilute conditions: morphological comparison of nanocellulose. Jordan JH; Easson MW; Condon BD RSC Adv; 2020 Oct; 10(65):39413-39424. PubMed ID: 35515368 [TBL] [Abstract][Full Text] [Related]
2. Alkali Hydrolysis of Sulfated Cellulose Nanocrystals: Optimization of Reaction Conditions and Tailored Surface Charge. Jordan JH; Easson MW; Condon BD Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31480286 [TBL] [Abstract][Full Text] [Related]
3. Cellulose nanocrystals' production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4)-mediated hydrolysis. Mao J; Heck B; Reiter G; Laborie MP Carbohydr Polym; 2015 Mar; 117():443-451. PubMed ID: 25498657 [TBL] [Abstract][Full Text] [Related]
4. Thermo-mechano-chemical deconstruction of cellulose for cellulose nanocrystal production by reactive processing. Guiao KS; Tzoganakis C; Mekonnen TH Carbohydr Polym; 2022 Sep; 291():119543. PubMed ID: 35698373 [TBL] [Abstract][Full Text] [Related]
5. SO₃H-functionalized acidic ionic liquids as catalysts for the hydrolysis of cellulose. Liu Y; Xiao W; Xia S; Ma P Carbohydr Polym; 2013 Jan; 92(1):218-22. PubMed ID: 23218286 [TBL] [Abstract][Full Text] [Related]
6. Preparation of Cellulose Nanocrystals by Synergistic Action of Ionic Liquid and Recyclable Solid Acid under Mild Conditions. Ma L; Xu Y; Chen J; Dong C; Pang Z Molecules; 2023 Mar; 28(7):. PubMed ID: 37049833 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous improvement of thermal stability and redispersibility of cellulose nanocrystals by using ionic liquids. Song X; Zhou L; Ding B; Cui X; Duan Y; Zhang J Carbohydr Polym; 2018 Apr; 186():252-259. PubMed ID: 29455986 [TBL] [Abstract][Full Text] [Related]
8. Preparation of nanocellulose in high yield via chemi-mechanical synergy. Wang J; Xu J; Zhu S; Wu Q; Li J; Gao Y; Wang B; Li J; Gao W; Zeng J; Chen K Carbohydr Polym; 2021 Jan; 251():117094. PubMed ID: 33142632 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterization of cellulose nanocrystals from corncob Rasri W; Thu VT; Corpuz A; Nguyen LT RSC Adv; 2023 Jun; 13(28):19020-19029. PubMed ID: 37362328 [TBL] [Abstract][Full Text] [Related]
12. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions. Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806 [TBL] [Abstract][Full Text] [Related]
13. Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H Xie H; Zou Z; Du H; Zhang X; Wang X; Yang X; Wang H; Li G; Li L; Si C Carbohydr Polym; 2019 Nov; 223():115116. PubMed ID: 31427005 [TBL] [Abstract][Full Text] [Related]
14. Preparation of Nanocellulose Using Ionic Liquids: 1-Propyl-3-Methylimidazolium Chloride and 1-Ethyl-3-Methylimidazolium Chloride. Babicka M; Woźniak M; Dwiecki K; Borysiak S; Ratajczak I Molecules; 2020 Mar; 25(7):. PubMed ID: 32231037 [TBL] [Abstract][Full Text] [Related]
15. Sustainable preparation of bifunctional cellulose nanocrystals via mixed H Wang H; Du H; Liu K; Liu H; Xu T; Zhang S; Chen X; Zhang R; Li H; Xie H; Zhang X; Si C Carbohydr Polym; 2021 Aug; 266():118107. PubMed ID: 34044925 [TBL] [Abstract][Full Text] [Related]
16. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Vasconcelos NF; Feitosa JP; da Gama FM; Morais JP; Andrade FK; de Souza Filho MS; Rosa MF Carbohydr Polym; 2017 Jan; 155():425-431. PubMed ID: 27702531 [TBL] [Abstract][Full Text] [Related]
17. Bacterial cellulose nanocrystals obtained through enzymatic and acidic routes: A comparative study of their main properties and in vitro biological responses. Claro AM; Dias IKR; Fontes ML; Colturato VMM; Lima LR; Sávio LB; Berto GL; Arantes V; Barud HDS Carbohydr Res; 2024 May; 539():109104. PubMed ID: 38643706 [TBL] [Abstract][Full Text] [Related]
18. Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Abushammala H; Krossing I; Laborie MP Carbohydr Polym; 2015 Dec; 134():609-16. PubMed ID: 26428164 [TBL] [Abstract][Full Text] [Related]
19. Isolation and Characterization of Spherical Cellulose Nanocrystals Extracted from the Higher Cellulose Yield of the Jenfokie Plant: Morphological, Structural, and Thermal Properties. Wossine SE; Thothadri G; Tufa HB; Tucho WM; Murtaza A; Edacherian A; Sayeed Ahmed GM Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38931979 [TBL] [Abstract][Full Text] [Related]
20. Physicochemical Properties of Cellulose Nanocrystals Extracted from Postconsumer Polyester/Cotton-Blended Fabrics and Their Effects on PVA Composite Films. Baloyi RB; Sithole BB; Chunilall V Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]