These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35515528)

  • 1. Kinetic studies of few-layer graphene grown by flame deposition from the perspective of gas composition and temperature.
    Ismail E; Fauzi FB; Mohamed MA; Mohd Yasin MF; Mohd Abid MAA; Yaacob II; Md Din MF; Ani MH
    RSC Adv; 2019 Jul; 9(36):21000-21008. PubMed ID: 35515528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Few-layer graphene direct deposition on Ni and Cu foil by cold-wall chemical vapor deposition.
    Chang QH; Guo GL; Wang T; Ji LC; Huang L; Ling B; Yang HF
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6516-20. PubMed ID: 22962776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical vapour deposition of graphene on copper-nickel alloys: the simulation of a thermodynamic and kinetic approach.
    Al-Hilfi SH; Derby B; Martin PA; Whitehead JC
    Nanoscale; 2020 Jul; 12(28):15283-15294. PubMed ID: 32647854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Vapor Deposited Few-Layer Graphene as an Electron Field Emitter.
    Behural SK; Nayak S; Yang Q; Hirose A; Janil O
    J Nanosci Nanotechnol; 2016 Jan; 16(1):287-95. PubMed ID: 27398456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper.
    Gottlieb S; Wöhrl N; Schulz S; Buck V
    Springerplus; 2016; 5():568. PubMed ID: 27247865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Different Layers of Graphene on Stainless Steel Using the CVD Method.
    Ghaemi F; Abdullah LC; Tahir PM; Yunus R
    Nanoscale Res Lett; 2016 Dec; 11(1):506. PubMed ID: 27854079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of gas-phase dynamics in interfacial phenomena during few-layer graphene growth through atmospheric pressure chemical vapour deposition.
    Fauzi FB; Ismail E; Syed Abu Bakar SN; Ismail AF; Mohamed MA; Md Din MF; Illias S; Ani MH
    Phys Chem Chem Phys; 2020 Feb; 22(6):3481-3489. PubMed ID: 31989130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure.
    Jang J; Son M; Chung S; Kim K; Cho C; Lee BH; Ham MH
    Sci Rep; 2015 Dec; 5():17955. PubMed ID: 26658923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Temperature Chemical Vapor Deposition Growth of Graphene Layers on Copper Substrate Using Camphor Precursor.
    Kavitha K; Urade AR; Kaur G; Lahiri I
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7698-7704. PubMed ID: 32711645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cu thin films.
    Piazzi M; Croin L; Vittone E; Amato G
    Springerplus; 2012 Dec; 1(1):52. PubMed ID: 23503582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct synthesis of graphene on silicon oxide by low temperature plasma enhanced chemical vapor deposition.
    Muñoz R; Martínez L; López-Elvira E; Munuera C; Huttel Y; García-Hernández M
    Nanoscale; 2018 Jul; 10(26):12779-12787. PubMed ID: 29946620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition.
    Malesevic A; Vitchev R; Schouteden K; Volodin A; Zhang L; Tendeloo GV; Vanhulsel A; Haesendonck CV
    Nanotechnology; 2008 Jul; 19(30):305604. PubMed ID: 21828766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective growth of graphene in layer-by-layer via chemical vapor deposition.
    Park J; An H; Choi DC; Hussain S; Song W; An KS; Lee WJ; Lee N; Lee WG; Jung J
    Nanoscale; 2016 Aug; 8(30):14633-42. PubMed ID: 27436358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene.
    Kitzmann J; Göritz A; Fraschke M; Lukosius M; Wenger C; Wolff A; Lupina G
    Sci Rep; 2016 Jul; 6():29223. PubMed ID: 27381715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition.
    Vitchev R; Malesevic A; Petrov RH; Kemps R; Mertens M; Vanhulsel A; Van Haesendonck C
    Nanotechnology; 2010 Mar; 21(9):095602. PubMed ID: 20110582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Efficiency Study of Graphene Synthesis on Copper Substrate via Chemical Vapor Deposition Method with Methanol Precursor.
    Huang BR; Hung SC; Ho YS; Chen YS; Yang WD
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36986030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system.
    Zhang C; Man BY; Yang C; Jiang SZ; Liu M; Chen CS; Xu SC; Sun ZC; Gao XG; Chen XJ
    Nanotechnology; 2013 Oct; 24(39):395603. PubMed ID: 24013529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical vapor deposition of N-doped graphene and carbon films: the role of precursors and gas phase.
    Ito Y; Christodoulou C; Nardi MV; Koch N; Sachdev H; Müllen K
    ACS Nano; 2014 Apr; 8(4):3337-46. PubMed ID: 24641621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.