These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35515541)

  • 1. Synthesis and electrochemical performance of NaV
    Hu F; Xie D; Cui F; Zhang D; Song G
    RSC Adv; 2019 Jul; 9(36):20549-20556. PubMed ID: 35515541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Na(1.25)V(3)O(8) nanobelts with excellent long-term stability for rechargeable lithium-ion batteries.
    Liang S; Chen T; Pan A; Liu D; Zhu Q; Cao G
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11913-7. PubMed ID: 24147642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Quantum Dots Promote Coupled Valence Engineering of V
    Zhang J; Wei S; Wang H; Liu H; Zhang Y; Liu S; Wang Z; Lu X
    ChemSusChem; 2021 May; 14(9):2076-2083. PubMed ID: 33751841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin δ-MnO
    Peng H; Fan H; Yang C; Tian Y; Wang C; Sui J
    RSC Adv; 2020 May; 10(30):17702-17712. PubMed ID: 35515586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NaV3O8 nanosheet@polypyrrole core-shell composites with good electrochemical performance as cathodes for Na-ion batteries.
    Kang H; Liu Y; Shang M; Lu T; Wang Y; Jiao L
    Nanoscale; 2015 May; 7(20):9261-7. PubMed ID: 25939956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Reversible Zinc Storage Achieved in a Constitutionally Crystalline-Stable Mn(VO
    Ke J; Zhang Y; Zhang Y; Ye M; Zhang Z; Tang Y; Liu X; Chao Li C
    Chemistry; 2022 Sep; 28(54):e202201687. PubMed ID: 35790473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NaV
    Li R; Guan C; Bian X; Yu X; Hu F
    RSC Adv; 2020 Feb; 10(12):6807-6813. PubMed ID: 35493911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The displacement reaction mechanism of the CuV
    Yu X; Hu F; Cui F; Zhao J; Guan C; Zhu K
    Dalton Trans; 2020 Jan; 49(4):1048-1055. PubMed ID: 31833505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnesium/Lithium-Ion Hybrid Battery with High Reversibility by Employing NaV
    Rashad M; Li X; Zhang H
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21313-21320. PubMed ID: 29862802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Cost Room-Temperature Synthesis of NaV
    Rashad M; Zhang H; Asif M; Feng K; Li X; Zhang H
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4757-4766. PubMed ID: 29345460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freestanding, Hierarchical, and Porous Bilayered Na
    Xu G; Liu X; Huang S; Li L; Wei X; Cao J; Yang L; Chu PK
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):706-716. PubMed ID: 31799821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Durable Na
    Hu P; Zhu T; Wang X; Wei X; Yan M; Li J; Luo W; Yang W; Zhang W; Zhou L; Zhou Z; Mai L
    Nano Lett; 2018 Mar; 18(3):1758-1763. PubMed ID: 29397745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries.
    Zhai XZ; Qu J; Hao SM; Jing YQ; Chang W; Wang J; Li W; Abdelkrim Y; Yuan H; Yu ZZ
    Nanomicro Lett; 2020 Feb; 12(1):56. PubMed ID: 34138296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries.
    Zhou X; Wu G; Wu J; Yang H; Wang J; Gao G
    Phys Chem Chem Phys; 2014 Mar; 16(9):3973-82. PubMed ID: 24445581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and electrochemical performance of VO
    Li R; Yu X; Bian X; Hu F
    RSC Adv; 2019 Oct; 9(60):35117-35123. PubMed ID: 35530719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Electrochemical Transformation Reaction of Ammonium-Anchored Heptavanadate Cathode for Long-Life Aqueous Zinc-Ion Batteries.
    Dong W; Du M; Zhang F; Zhang X; Miao Z; Li H; Sang Y; Wang JJ; Liu H; Wang S
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5034-5043. PubMed ID: 33464805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc-Ion Batteries.
    Hao J; Yuan L; Johannessen B; Zhu Y; Jiao Y; Ye C; Xie F; Qiao SZ
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):25114-25121. PubMed ID: 34553459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance reversible aqueous Zinc-Ion battery based on Zn
    Jing F; Pei J; Zhou Y; Shang Y; Yao S; Liu S; Chen G
    J Colloid Interface Sci; 2022 Mar; 609():557-565. PubMed ID: 34802771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress on Phosphate Cathode Materials for Aqueous Zinc-Ion Batteries.
    Ou L; Ou H; Qin M; Liu Z; Fang G; Cao X; Liang S
    ChemSusChem; 2022 Oct; 15(19):e202201184. PubMed ID: 35934677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiodynamics of the Zinc and Proton Storage in Disordered Sodium Vanadate for Aqueous Zn-Ion Batteries.
    Shan X; Kim S; Abeykoon AMM; Kwon G; Olds D; Teng X
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54627-54636. PubMed ID: 33147962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.