These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35515632)
21. Carbonated ground granulated blast furnace slag stabilising brown kaolin. Mohammed AMA; Mohd Yunus NZ; Hezmi MA; A Rashid AS; Horpibulsuk S Environ Sci Pollut Res Int; 2021 Oct; 28(40):57308-57320. PubMed ID: 34086175 [TBL] [Abstract][Full Text] [Related]
22. The Indirect Mineral Carbonation of Electric Arc Furnace Slag Under Microwave Irradiation. Tong Z; Ma G; Zhou D; Yang G; Peng C Sci Rep; 2019 May; 9(1):7676. PubMed ID: 31118435 [TBL] [Abstract][Full Text] [Related]
23. Utilization of Malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature. Omale SO; Choong TSY; Abdullah LC; Siajam SI; Yip MW Heliyon; 2019 Oct; 5(10):e02602. PubMed ID: 31667417 [TBL] [Abstract][Full Text] [Related]
24. A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag. Fan G; Wang M; Dang J; Zhang R; Lv Z; He W; Lv X Waste Manag; 2021 Feb; 120():626-634. PubMed ID: 33176939 [TBL] [Abstract][Full Text] [Related]
25. Manganese-cerium oxide (MnO Xu Y; Liu R; Ye F; Jia F; Ji L J Air Waste Manag Assoc; 2017 Aug; 67(8):899-909. PubMed ID: 28287904 [TBL] [Abstract][Full Text] [Related]
26. Kinetics of extracting valuable components from Ti-bearing blast furnace slag by acidolysis with sulphuric acid. Wang Y; Gao X; He S; Guo J Front Chem; 2024; 12():1369937. PubMed ID: 38389723 [TBL] [Abstract][Full Text] [Related]
27. Treatment of ladle furnace slag by carbonation: Carbon dioxide sequestration, heavy metal immobilization, and strength enhancement. Xu B; Yi Y Chemosphere; 2022 Jan; 287(Pt 3):132274. PubMed ID: 34562709 [TBL] [Abstract][Full Text] [Related]
28. Effect of roasting process on the V (anti-tumor agent) recovery from the slag of the electric arc furnace (EAF). Akbari M; Daneshmand S; Heydari Vini M; Azimy H Heliyon; 2024 Jun; 10(11):e31986. PubMed ID: 38845914 [TBL] [Abstract][Full Text] [Related]
29. Atmospheric Carbon Capture Performance of Legacy Iron and Steel Waste. Pullin H; Bray AW; Burke IT; Muir DD; Sapsford DJ; Mayes WM; Renforth P Environ Sci Technol; 2019 Aug; 53(16):9502-9511. PubMed ID: 31317734 [TBL] [Abstract][Full Text] [Related]
30. Performance and mechanisms of alkaline solid waste in CO Zhang Y; Zhan G; Huang Z; Xing L; Ying Y; Chen Z; Li J Waste Manag; 2024 Mar; 175():62-72. PubMed ID: 38171077 [TBL] [Abstract][Full Text] [Related]
31. Recovery of scandium and neodymium from blast furnace slag using acid baking-water leaching. Kim J; Azimi G RSC Adv; 2020 Aug; 10(53):31936-31946. PubMed ID: 35518186 [TBL] [Abstract][Full Text] [Related]
32. Co-treatment of Waste From Steelmaking Processes: Steel Slag-Based Carbon Capture and Storage by Mineralization. Zhao Q; Chu X; Mei X; Meng Q; Li J; Liu C; Saxén H; Zevenhoven R Front Chem; 2020; 8():571504. PubMed ID: 33195057 [TBL] [Abstract][Full Text] [Related]
33. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching. Gu F; Zhang Y; Peng Z; Su Z; Tang H; Tian W; Liang G; Lee J; Rao M; Li G; Jiang T J Hazard Mater; 2019 Jul; 374():83-91. PubMed ID: 30981016 [TBL] [Abstract][Full Text] [Related]
34. Thin-film versus slurry-phase carbonation of steel slag: CO₂ uptake and effects on mineralogy. Baciocchi R; Costa G; Di Gianfilippo M; Polettini A; Pomi R; Stramazzo A J Hazard Mater; 2015; 283():302-13. PubMed ID: 25289564 [TBL] [Abstract][Full Text] [Related]
35. Simultaneous recycling of Si and Ti from diamond wire saw silicon powder and Ti-bearing blast furnace slag via reduction smelting: An investigation of the effects of refractories on recycling. Zhang Y; Lei Y; Ma W; Ren Y Waste Manag; 2023 Feb; 157():36-46. PubMed ID: 36521299 [TBL] [Abstract][Full Text] [Related]
36. Efficient separation of silica and alumina in simulated CFB slag by reduction roasting-alkaline leaching process. Li X; Wang H; Zhou Q; Qi T; Liu G; Peng Z Waste Manag; 2019 Mar; 87():798-804. PubMed ID: 31109584 [TBL] [Abstract][Full Text] [Related]
37. High-Gravity Carbonation Process for Enhancing CO2 Fixation and Utilization Exemplified by the Steelmaking Industry. Pan SY; Chen YH; Chen CD; Shen AL; Lin M; Chiang PC Environ Sci Technol; 2015 Oct; 49(20):12380-7. PubMed ID: 26397167 [TBL] [Abstract][Full Text] [Related]
38. An industrial demonstration study on CO Wang T; Yi Z; Song J; Zhao C; Guo R; Gao X iScience; 2022 May; 25(5):104261. PubMed ID: 35521533 [TBL] [Abstract][Full Text] [Related]
39. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. Chen D; Zhao L; Liu Y; Qi T; Wang J; Wang L J Hazard Mater; 2013 Jan; 244-245():588-95. PubMed ID: 23177244 [TBL] [Abstract][Full Text] [Related]
40. On the industrial symbiosis of alumina and iron/steel production: Suitability of ferroalumina as raw material in iron and steel making. Karamoutsos S; Tzevelekou T; Christogerou A; Grilla E; Gypakis A; Pérez Villarejo L; Mantzavinos D; Angelopoulos GN Waste Manag Res; 2021 Oct; 39(10):1270-1276. PubMed ID: 33594947 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]